Access to this article is restricted until 12 months after publication by request of the publisher. Restriction lift date: 2026-01-31
Smart meter reference load profiles and peak demand models
dc.check.date | 2026-01-31 | |
dc.check.info | Access to this article is restricted until 12 months after publication by request of the publisher | en |
dc.contributor.author | Carroll, Paula | en |
dc.contributor.author | Silva, Fábio | en |
dc.contributor.author | Tahir, Farah | en |
dc.contributor.author | O'Regan, Brian | en |
dc.contributor.author | Lyons, Pádraig | en |
dc.contributor.funder | International Energy Research Centre (IERC) | en |
dc.contributor.funder | Tyndall National Institute | en |
dc.contributor.funder | University College Cork | en |
dc.contributor.funder | University College Dublin | en |
dc.date.accessioned | 2024-07-01T11:31:57Z | |
dc.date.available | 2024-07-01T11:31:57Z | |
dc.date.issued | 2025-01-31 | en |
dc.description.abstract | Smart grids are components of future clean energy systems. They create new challenges and opportunities for the efficient and reliable management of the electricity system. The aggregate behaviour of groups of electricity users, such as the magnitude and timing of peak demand are important factors in determining the required capacity of the Low Voltage (LV) distribution network in the context of a transition to low carbon heat and transport. In this paper we use smart meter data from consumer behaviour trials in Ireland to create Reference Load Profiles (RLPs), and to model peak residential electricity demand. We find differences in the peak demand and profile by day type, and that Burr, and Weibull models are useful to estimate peak demand. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Carroll, P., Silva, F., Tahir, F., O’Regan, B., Lyons, P. (2025) 'Smart meter reference load profiles and peak demand models', in Juan, A. A., Faulin, J. and Lopez-Lopez, D. (eds.) Decision Sciences. DSA ISC 2024. Lecture Notes in Computer Science, vol 14778, pp 361–375. Springer, Cham. https://doi.org/10.1007/978-3-031-78238-1_33 | en |
dc.identifier.doi | 10.1007/978-3-031-78238-1_33 | |
dc.identifier.endpage | 375 | |
dc.identifier.startpage | 361 | |
dc.identifier.uri | https://hdl.handle.net/10468/16043 | |
dc.identifier.volume | 14778 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Decision Science Alliance, DSA ISC International Summer Conference 2024 (ISC 24) | en |
dc.relation.uri | https://decisionsciencealliance.org/ISC-2024/ | en |
dc.rights | © 2025, the Authors, under exclusive license to Springer Nature Switzerland AG. | en |
dc.subject | Reference load profile | en |
dc.subject | Smart grid | en |
dc.subject | Peak demand model | en |
dc.title | Smart meter reference load profiles and peak demand models | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PC__ISC_2024___Smart_Meter_Reference_Load_Profiles_and_Peak_Demand_Models.pdf
- Size:
- 963.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: