GaN nanowire Schottky barrier diodes
dc.contributor.author | Sabui, Gourab | |
dc.contributor.author | Zubialevich, Vitaly Z. | |
dc.contributor.author | White, Mary | |
dc.contributor.author | Pampili, Pietro | |
dc.contributor.author | Parbrook, Peter J. | |
dc.contributor.author | McLaren, Mathew | |
dc.contributor.author | Arredondo-Arechavala, Miryam | |
dc.contributor.author | Shen, Z. John | |
dc.contributor.funder | National Science Foundation | |
dc.contributor.funder | Science Foundation Ireland | |
dc.date.accessioned | 2018-03-20T11:03:53Z | |
dc.date.available | 2018-03-20T11:03:53Z | |
dc.date.issued | 2017-03-21 | |
dc.date.updated | 2018-03-12T10:02:39Z | |
dc.description.abstract | A new concept of vertical gallium nitride (GaN) Schottky barrier diode based on nanowire (NW) structures and the principle of dielectric REduced SURface Field (RESURF) is proposed in this paper. High-threading dislocation density in GaN epitaxy grown on foreign substrates has hindered the development and commercialization of vertical GaN power devices. The proposed NW structure, previously explored for LEDs offers an opportunity to reduce defect density and fabricate low cost vertical GaN power devices on silicon (Si) substrates. In this paper, we investigate the static characteristics of high-voltage GaN NW Schottky diodes using 3-D TCAD device simulation. The NW architecture theoretically achieves blocking voltages upward of 700 V with very low specific on-resistance. Two different methods of device fabrication are discussed. Preliminary experimental results are reported on device samples fabricated using one of the proposed methods. The fabricated Schottky diodes exhibit a breakdown voltage of around 100 V and no signs of current collapse. Although more work is needed to further explore the nano-GaN concept, the preliminary results indicate that superior tradeoff between the breakdown voltage and specific on-resistance can be achieved, all on a vertical architecture and a foreign substrate. The proposed NW approach has the potential to deliver low cost reliable GaN power devices, circumventing the limitations of today's high electron mobility transistors (HEMTs) technology and vertical GaN on GaN devices. | en |
dc.description.sponsorship | National Science Foundation (Grant EECS-1407540) | |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Sabui, G., Zubialevich, V. Z., White, M., Pampili, P., Parbrook, P. J., McLaren, M., Arredondo-Arechavala, M. and Shen, Z. J. (2017) 'GaN nanowire Schottky barrier diodes', IEEE Transactions on Electron Devices, 64(5), pp. 2283-2290. doi:10.1109/TED.2017.2679727 | en |
dc.identifier.doi | 10.1109/TED.2017.2679727 | |
dc.identifier.endpage | 2290 | en |
dc.identifier.issn | 0018-9383 | |
dc.identifier.issued | 5 | en |
dc.identifier.journaltitle | IEEE Transactions on Electron Devices | en |
dc.identifier.startpage | 2283 | en |
dc.identifier.uri | https://hdl.handle.net/10468/5634 | |
dc.identifier.volume | 64 | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.project | EECS-1407540 | |
dc.rights | © 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.subject | Gallium nitride | en |
dc.subject | Substrates | en |
dc.subject | Silicon | en |
dc.subject | Schottky diode | en |
dc.subject | Epitaxial growth | en |
dc.subject | Fabrication | en |
dc.subject | Schottky barriers | en |
dc.subject | GaN | en |
dc.subject | Nanowire | en |
dc.subject | NW | en |
dc.subject | Power semiconductor devices | en |
dc.subject | Wide bandgap | en |
dc.title | GaN nanowire Schottky barrier diodes | en |
dc.type | Article (peer-reviewed) | en |