GaN nanowire Schottky barrier diodes

dc.contributor.authorSabui, Gourab
dc.contributor.authorZubialevich, Vitaly Z.
dc.contributor.authorWhite, Mary
dc.contributor.authorPampili, Pietro
dc.contributor.authorParbrook, Peter J.
dc.contributor.authorMcLaren, Mathew
dc.contributor.authorArredondo-Arechavala, Miryam
dc.contributor.authorShen, Z. John
dc.contributor.funderNational Science Foundation
dc.contributor.funderScience Foundation Ireland
dc.date.accessioned2018-03-20T11:03:53Z
dc.date.available2018-03-20T11:03:53Z
dc.date.issued2017-03-21
dc.date.updated2018-03-12T10:02:39Z
dc.description.abstractA new concept of vertical gallium nitride (GaN) Schottky barrier diode based on nanowire (NW) structures and the principle of dielectric REduced SURface Field (RESURF) is proposed in this paper. High-threading dislocation density in GaN epitaxy grown on foreign substrates has hindered the development and commercialization of vertical GaN power devices. The proposed NW structure, previously explored for LEDs offers an opportunity to reduce defect density and fabricate low cost vertical GaN power devices on silicon (Si) substrates. In this paper, we investigate the static characteristics of high-voltage GaN NW Schottky diodes using 3-D TCAD device simulation. The NW architecture theoretically achieves blocking voltages upward of 700 V with very low specific on-resistance. Two different methods of device fabrication are discussed. Preliminary experimental results are reported on device samples fabricated using one of the proposed methods. The fabricated Schottky diodes exhibit a breakdown voltage of around 100 V and no signs of current collapse. Although more work is needed to further explore the nano-GaN concept, the preliminary results indicate that superior tradeoff between the breakdown voltage and specific on-resistance can be achieved, all on a vertical architecture and a foreign substrate. The proposed NW approach has the potential to deliver low cost reliable GaN power devices, circumventing the limitations of today's high electron mobility transistors (HEMTs) technology and vertical GaN on GaN devices.en
dc.description.sponsorshipNational Science Foundation (Grant EECS-1407540)
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSabui, G., Zubialevich, V. Z., White, M., Pampili, P., Parbrook, P. J., McLaren, M., Arredondo-Arechavala, M. and Shen, Z. J. (2017) 'GaN nanowire Schottky barrier diodes', IEEE Transactions on Electron Devices, 64(5), pp. 2283-2290. doi:10.1109/TED.2017.2679727en
dc.identifier.doi10.1109/TED.2017.2679727
dc.identifier.endpage2290en
dc.identifier.issn0018-9383
dc.identifier.issued5en
dc.identifier.journaltitleIEEE Transactions on Electron Devicesen
dc.identifier.startpage2283en
dc.identifier.urihttps://hdl.handle.net/10468/5634
dc.identifier.volume64en
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectEECS-1407540
dc.rights© 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectGallium nitrideen
dc.subjectSubstratesen
dc.subjectSiliconen
dc.subjectSchottky diodeen
dc.subjectEpitaxial growthen
dc.subjectFabricationen
dc.subjectSchottky barriersen
dc.subjectGaNen
dc.subjectNanowireen
dc.subjectNWen
dc.subjectPower semiconductor devicesen
dc.subjectWide bandgapen
dc.titleGaN nanowire Schottky barrier diodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FINAL_VERSION.pdf
Size:
818.9 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: