Pseudo molecular doping and ambipolarity tuning in si junctionless nanowire transistors using gaseous nitrogen dioxide

dc.contributor.authorVardhan, Vaishalien
dc.contributor.authorBiswas, Subhajiten
dc.contributor.authorGhosh, Sayantanen
dc.contributor.authorTsetseris, Leonidasen
dc.contributor.authorGhoshal, Tandraen
dc.contributor.authorHellebust, Stigen
dc.contributor.authorGeorgiev, Yordan M.en
dc.contributor.authorHolmes, Justin D.en
dc.contributor.funderHorizon 2020en
dc.date.accessioned2025-01-03T16:10:28Z
dc.date.available2025-01-03T16:10:28Z
dc.date.issued2024en
dc.description.abstractAmbipolar transistors facilitate concurrent transport of both positive (holes) and negative (electrons) charge carriers in the semiconducting channel. Effective manipulation of conduction symmetry and electrical characteristics in ambipolar silicon junctionless nanowire transistors (Si-JNTs) is demonstrated using gaseous nitrogen dioxide (NO2). This involves a dual reaction in both p- and n-type conduction, resulting in a significant decrease in the current in n-conduction mode and an increase in the p-conduction mode upon NO2 exposure. Various Si-JNT parameters, including “on”-current (Ion), threshold voltage (Vth), and mobility (µ) exhibit dynamic changes in both the p- and n-conduction modes of the ambipolar transistor upon interaction with NO2 (concentration between 2.5 – 50 ppm). Additionally, NO2 exposure to Si-JNTs with different surface morphologies, that is, unpassivated Si-JNTs with a native oxide or with a thermally grown oxide (10 nm), show distinct influences on Ion, Vth, and µ, highlighting the effect of surface oxide on NO2-mediated charge transfer. Interaction with NO2 alters the carrier concentration in the JNT channel, with NO2 acting as an electron acceptor and inducing holes, as supported by Density Functional Theory (DFT) calculations, providing a pathway for charge transfer and “pseudo” molecular doping in ambipolar Si-JNTs.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid2400338en
dc.identifier.citationVardhan, V., Biswas, S., Ghosh, S., Tsetseris, L., Ghoshal, T., Hellebust, S., Georgiev, Y.M. and Holmes, J.D. (2024) ‘Pseudo molecular doping and ambipolarity tuning in si junctionless nanowire transistors using gaseous nitrogen dioxide’, Advanced Electronic Materials, p. 2400338 (32pp). https://doi.org/10.1002/aelm.202400338en
dc.identifier.doihttps://doi.org/10.1002/aelm.202400338en
dc.identifier.eissn2199-160Xen
dc.identifier.endpage32en
dc.identifier.journaltitleAdvanced Electronic Materialsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/16776
dc.language.isoenen
dc.publisherWileyen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/899282/EU/Fundamental Breakthrough in Detection of Atmospheric Free Radicals/RADICALen
dc.rights© 2024, The Author(s). Advanced Electronic Materials published byWiley-VCH GmbH. This is an open access article under the terms of theCreative Commons Attribution License, which permits use, distributionand reproduction in any medium, provided the original work is properlyciteden
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectSilicon nanowireen
dc.subjectJunction less transistoren
dc.subjectAmbipolar deviceen
dc.subjectPseudo molecular dopingen
dc.subjectDensity functional theoryen
dc.subjectNitrogen dioxideen
dc.titlePseudo molecular doping and ambipolarity tuning in si junctionless nanowire transistors using gaseous nitrogen dioxideen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Vardhan et al_Adv Elect Mater_Manuscript_Revised2.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
aelm1020-sup-0001-suppmat.docx
Size:
10.89 MB
Format:
Microsoft Word XML
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: