The use of datasets of bad quality images to define fundus image quality
dc.contributor.author | Menolotto, Matteo | |
dc.contributor.author | Giardini, Mario E. | |
dc.contributor.funder | Rosetrees Trust | en |
dc.contributor.funder | Sight Research UK | en |
dc.date.accessioned | 2022-09-20T09:29:45Z | |
dc.date.available | 2022-09-20T09:29:45Z | |
dc.date.issued | 2022-09-08 | |
dc.date.updated | 2022-09-02T15:12:45Z | |
dc.description.abstract | Screening programs for sight-threatening diseases rely on the grading of a large number of digital retinal images. As automatic image grading technology evolves, there emerges a need to provide a rigorous definition of image quality with reference to the grading task. In this work, on two subsets of the CORD database of clinically gradable and matching non-gradable digital retinal images, a feature set based on statistical and on task-specific morphological features has been identified. A machine learning technique has then been demonstrated to classify the images as per their clinical gradeability, offering a proxy for a rigorous definition of image quality. | en |
dc.description.sponsorship | Rosetrees Trust (Grant M720); Sight Research UK (Grant SAC030) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Menolotto, M. and Giardini, M. E. (2022) 'The use of datasets of bad quality images to define fundus image quality', 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, United Kingdom, 11-15 July, pp. 504-507. doi: 10.1109/EMBC48229.2022.9871614 | en |
dc.identifier.doi | 10.1109/EMBC48229.2022.9871614 | en |
dc.identifier.eissn | 2694-0604 | |
dc.identifier.endpage | 507 | en |
dc.identifier.isbn | 978-1-7281-2783-5 | |
dc.identifier.isbn | 978-1-7281-2782-8 | |
dc.identifier.issn | 2375-7477 | |
dc.identifier.startpage | 504 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13619 | |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | © 2022, the Authors. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | en |
dc.subject | Sight-threatening diseases | en |
dc.subject | Digital retinal images | en |
dc.subject | Image quality | en |
dc.title | The use of datasets of bad quality images to define fundus image quality | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The_Use_of_Datasets_of_Bad_Quality_Images_to_Define_Fundus_Image_Quality.pdf
- Size:
- 409.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: