Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies
dc.contributor.author | Saladukha, Dzianis | |
dc.contributor.author | Clavel, M. B. | |
dc.contributor.author | Murphy-Armando, Felipe | |
dc.contributor.author | Greene-Diniz, Gabriel | |
dc.contributor.author | Grüning, M. | |
dc.contributor.author | Hudait, Mantu | |
dc.contributor.author | Ochalski, Tomasz J. | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Department for Employment and Learning, Northern Ireland | en |
dc.contributor.funder | Queen's University Belfast | en |
dc.contributor.funder | National Science Foundation | en |
dc.contributor.funder | Invest NI, United States | en |
dc.date.accessioned | 2018-05-31T13:58:17Z | |
dc.date.available | 2018-05-31T13:58:17Z | |
dc.date.issued | 2018-05-09 | |
dc.date.updated | 2018-05-31T13:44:49Z | |
dc.description.abstract | Germanium is an indirect semiconductor which attracts particular interest as an electronics and photonics material due to low indirect-to-direct band separation. In this work we bend the bands of Ge by means of biaxial tensile strain in order to achieve a direct band gap. Strain is applied by growth of Ge on a lattice mismatched InGaAs buffer layer with variable In content. Band structure is studied by photoluminescence and photoreflectance, giving the indirect and direct bands of the material. Obtained experimental energy band values are compared with a k p simulation. Photoreflectance spectra are also simulated and compared with the experiment. The obtained results indicate direct band structure obtained for a Ge sample with 1.94 % strain applied, with preferable Γ valley to heavy hole transition. | en |
dc.description.sponsorship | Invest NI Grant, United States (Grant No. USI-073) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Saladukha, D., Clavel, M. B., Murphy-Armando, F., Greene-Diniz, G., Grüning, M., Hudait, M. K. and Ochalski, T. J. (2018) 'Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies', Physical Review B, 97(19), 195304 (12 pp). doi: 10.1103/PhysRevB.97.195304 | en |
dc.identifier.doi | 10.1103/PhysRevB.97.195304 | |
dc.identifier.endpage | 195304-12 | en |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issued | 19 | en |
dc.identifier.journaltitle | Physical Review B | en |
dc.identifier.startpage | 195304-1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/6238 | |
dc.identifier.volume | 97 | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/I3057/IE/Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors/ | en |
dc.relation.project | info:eu-repo/grantAgreement/NSF/Directorate for Engineering::Division of Electrical, Communications & Cyber Systems/1348653/US/EAGER: Silicon-compatible, Crystallographic Oriented Epitaxial Germanium for New Generation of Metal-oxide Semiconductor Field-effect Transistors/ | en |
dc.relation.project | info:eu-repo/grantAgreement/NSF//1507950/US/US-Ireland R&D Partnership: Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors/ | en |
dc.relation.uri | https://link.aps.org/doi/10.1103/PhysRevB.97.195304 | |
dc.rights | © 2018 American Physical Society | en |
dc.subject | Germanium | en |
dc.subject | Semiconductor | en |
dc.subject | Photonics | en |
dc.subject | InGaAs | en |
dc.subject | Photoreflectance | en |
dc.subject | Photoluminescence | en |
dc.title | Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies | en |
dc.type | Article (peer-reviewed) | en |