Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies

dc.contributor.authorSaladukha, Dzianis
dc.contributor.authorClavel, M. B.
dc.contributor.authorMurphy-Armando, Felipe
dc.contributor.authorGreene-Diniz, Gabriel
dc.contributor.authorGrüning, M.
dc.contributor.authorHudait, Mantu
dc.contributor.authorOchalski, Tomasz J.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderDepartment for Employment and Learning, Northern Irelanden
dc.contributor.funderQueen's University Belfasten
dc.contributor.funderNational Science Foundationen
dc.contributor.funderInvest NI, United Statesen
dc.date.accessioned2018-05-31T13:58:17Z
dc.date.available2018-05-31T13:58:17Z
dc.date.issued2018-05-09
dc.date.updated2018-05-31T13:44:49Z
dc.description.abstractGermanium is an indirect semiconductor which attracts particular interest as an electronics and photonics material due to low indirect-to-direct band separation. In this work we bend the bands of Ge by means of biaxial tensile strain in order to achieve a direct band gap. Strain is applied by growth of Ge on a lattice mismatched InGaAs buffer layer with variable In content. Band structure is studied by photoluminescence and photoreflectance, giving the indirect and direct bands of the material. Obtained experimental energy band values are compared with a k p simulation. Photoreflectance spectra are also simulated and compared with the experiment. The obtained results indicate direct band structure obtained for a Ge sample with 1.94 % strain applied, with preferable Γ valley to heavy hole transition.en
dc.description.sponsorshipInvest NI Grant, United States (Grant No. USI-073)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSaladukha, D., Clavel, M. B., Murphy-Armando, F., Greene-Diniz, G., Grüning, M., Hudait, M. K. and Ochalski, T. J. (2018) 'Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies', Physical Review B, 97(19), 195304 (12 pp). doi: 10.1103/PhysRevB.97.195304en
dc.identifier.doi10.1103/PhysRevB.97.195304
dc.identifier.endpage195304-12en
dc.identifier.issn2469-9950
dc.identifier.issued19en
dc.identifier.journaltitlePhysical Review Ben
dc.identifier.startpage195304-1en
dc.identifier.urihttps://hdl.handle.net/10468/6238
dc.identifier.volume97en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/I3057/IE/Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors/en
dc.relation.projectinfo:eu-repo/grantAgreement/NSF/Directorate for Engineering::Division of Electrical, Communications & Cyber Systems/1348653/US/EAGER: Silicon-compatible, Crystallographic Oriented Epitaxial Germanium for New Generation of Metal-oxide Semiconductor Field-effect Transistors/en
dc.relation.projectinfo:eu-repo/grantAgreement/NSF//1507950/US/US-Ireland R&D Partnership: Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors/en
dc.relation.urihttps://link.aps.org/doi/10.1103/PhysRevB.97.195304
dc.rights© 2018 American Physical Societyen
dc.subjectGermaniumen
dc.subjectSemiconductoren
dc.subjectPhotonicsen
dc.subjectInGaAsen
dc.subjectPhotoreflectanceen
dc.subjectPhotoluminescenceen
dc.titleDirect and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studiesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.97.195304.pdf
Size:
935.37 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: