Investigating the competition of radiative and nonradiative recombination in (In,Ga)N quantum wells

dc.contributor.authorSchulz, Stefanen
dc.contributor.authorMcMahon, Joshua M.en
dc.contributor.authorKioupakis, E.en
dc.contributor.authorBarrett, R. M.en
dc.contributor.authorAhumada-Lazo, R.en
dc.contributor.authorAlanis, J. A .en
dc.contributor.authorParkinson, P.en
dc.contributor.authorKappers, M. J.en
dc.contributor.authorOliver, R. A.en
dc.contributor.authorBinks, D.en
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderUniversity of Michiganen
dc.contributor.funderEngineering and Physical Sciences Research Councilen
dc.contributor.funderUK Research and Innovationen
dc.date.accessioned2023-11-08T10:34:11Z
dc.date.available2023-11-08T10:34:11Z
dc.date.issued2023-10-09en
dc.description.abstractWe present a combined theoretical and experimental analysis of Auger recombination in c-plane (In,Ga)N quantum wells. On the theoretical side we use an atomistic model that accounts for random alloy fluctuations to investigate the impact that temperature and carrier density has on the radiative and Auger recombination rate. Our calculations indicate a weak temperature dependence of the Auger rate compared to the temperature dependence of the radiative rate. However, with increasing carrier density the Auger rate increases more strongly when compared to the radiative rate. Our theory results indicate an onset of the efficiency drop at carrier densities ≳ 1×10 19 cm −3 , in very good agreement with our photoluminescence studies on similar (In,Ga)N quantum well samples. Overall, we find that alloy enhanced Auger recombination is sufficient to explain the experimental data investigated here.en
dc.description.sponsorshipScience Foundation Ireland (12/RC/2276 P2); University of Michigan (Blue Sky Research Program); Engineering and Physical Sciences Research Council (EP/M010589/1; EP/M010627/1; Doctoral Training Partnership studentships); UK Research and Innovation (Future Leaders Fellowship MR/T021519/1)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSchulz, S., McMahon, J., Kioupakis, E., Barrett, R. M., Ahumada-Lazo, R., Alanis, J. A., Parkinson, P., Kappers, M. J., Oliver, R. A. and Binks, D. (2023) 'Investigating the competition of radiative and nonradiative recombination in (In,Ga)N quantum wells', 2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 18-21 November, pp. 57-58. doi: 10.1109/NUSOD59562.2023.10273496en
dc.identifier.doi10.1109/nusod59562.2023.10273496en
dc.identifier.eissn2158-3242en
dc.identifier.endpage58en
dc.identifier.isbn979-8-3503-1429-8en
dc.identifier.isbn979-8-3503-1430-4en
dc.identifier.issn2158-3234en
dc.identifier.startpage57en
dc.identifier.urihttps://hdl.handle.net/10468/15204
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartof2023 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Career Development Award/17/CDA/4789/IE/Nitride-based light emitters: From carrier localization and non-radiative recombination processes to quantum transport and device design/en
dc.rights© 2023, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectInGaNen
dc.subjectQuantum wellsen
dc.subjectCarrier localizationen
dc.subjectAuger recombinationen
dc.titleInvestigating the competition of radiative and nonradiative recombination in (In,Ga)N quantum wellsen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NUSOD23_TuB01.pdf
Size:
299.24 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: