A first-principle assessment at atomistic scale of interface phenomena in down-scaling hafnium-based metal-insulator-metal diodes

dc.contributor.authorLaudadio, Emiliano
dc.contributor.authorAldrigo, Martino
dc.contributor.authorStipa, Pierluigi
dc.contributor.authorPierantoni, Luca
dc.contributor.authorMencarelli, Davide
dc.contributor.authorDragoman, Mircea
dc.contributor.authorModreanu, Mircea
dc.contributor.funderHorizon 2020en
dc.contributor.funderRomanian Ministry of Research, Innovation and Digitalizationen
dc.date.accessioned2023-03-15T12:16:42Z
dc.date.available2023-03-15T12:16:42Z
dc.date.issued2023-02-14
dc.date.updated2023-03-15T11:30:00Z
dc.description.abstractIn this paper, we present first-principle calculations to study the electrical properties of hafnium oxide (HfO2)-based metal-insulator-metal (MIM) diodes. These devices have been simulated by interposing 3 nm of HfO2 between drain and source contacts made of gold and platinum, respectively. The monoclinic and orthorhombic polymorphs of HfO2 have been considered to model different MIM diodes, and the interface geometries have been optimized to compute the I-V characteristics. The simulation results demonstrate the influence of the HfO2 polymorphs on the MIM properties and the importance to understand the interface phenomena that are related to the measurable properties of the proposed devices.en
dc.description.sponsorshipRomanian Ministry of Research, Innovation and Digitalization (Project PN-III-P3-3.6-H2020-2020-0072; Project PN-III-P2-2.1-PED-2019-0052); CINECA-HPC ISCRA MARCONI-100 computer system (Project No. HP10CMPMGP)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationLaudadio, E., Aldrigo, M., Stipa, P., Pierantoni, L., Mencarelli, D., Dragoman, M. and Modreanu, M. (2022) 'A first-principle assessment at atomistic scale of interface phenomena in down-scaling hafnium-based metal-insulator-metal diodes', 2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Limoges, France, 6-8 July. doi: 10.1109/NEMO51452.2022.10038975en
dc.identifier.doi10.1109/NEMO51452.2022.10038975en
dc.identifier.endpage3en
dc.identifier.isbn978-1-6654-8633-0
dc.identifier.isbn978-1-6654-8634-7
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/14309
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/951761/EU/NANOMATERIALS ENABLING SMART ENERGY HARVESTING FOR NEXT-GENERATION INTERNET-OF-THINGS/NANO-EHen
dc.rights© 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectDFTen
dc.subjectDiodesen
dc.subjectFerroelectric materialsen
dc.subjectHafnium compoundsen
dc.subjectI-V characteristicsen
dc.subjectInterfaceen
dc.subjectOptimizationen
dc.titleA first-principle assessment at atomistic scale of interface phenomena in down-scaling hafnium-based metal-insulator-metal diodesen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NEMO2022_1570795491_final.pdf
Size:
736.44 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: