Finite type minimal annuli in S2 x R

dc.contributor.authorHauswirth, L.
dc.contributor.authorKilian, Martin
dc.contributor.authorSchmidt, M. U.
dc.contributor.funderAgence Nationale de la Recherche
dc.date.accessioned2023-10-10T11:46:01Z
dc.date.available2023-10-04T14:18:03Zen
dc.date.available2023-10-10T11:46:01Z
dc.date.issued2013en
dc.date.updated2023-10-04T13:18:05Zen
dc.description.abstractWe study minimal annuli in S2 × R of finite type by relating them to harmonic maps C → S2 of finite type. We rephrase an iteration by Pinkall–Sterling in terms of polynomial Killing fields. We discuss spectral curves, spectral data and the geometry of the isospectral set. We consider polynomial Killing fields with zeroes and the corresponding singular spectral curves, bubbletons and simple factors. We investigate the differentiable structure on the isospectral set of any finite type minimal annulus. We apply the theory to a 2-parameter family of embedded minimal annuli foliated by horizontal circles.
dc.description.sponsorshipAgence Nationale de la Recherche (ANR-11-IS01-0002)
dc.description.statusPeer revieweden
dc.description.versionPublished Version
dc.format.mimetypeapplication/pdfen
dc.identifier.citationHauswirth, L., Kilian, M. and Schmidt, M. U. (2013) 'Finite type minimal annuli in S2 x R', Illinois Journal of Mathematics, 57(3), pp. 697-741. doi: 10.1215/ijm/1415023507
dc.identifier.doi10.1215/ijm/1415023507
dc.identifier.endpage741
dc.identifier.issn1945-6581
dc.identifier.issn0019-2082
dc.identifier.issued3
dc.identifier.journaltitleIllinois Journal of Mathematics
dc.identifier.startpage697
dc.identifier.urihttps://hdl.handle.net/10468/15093
dc.identifier.volume57
dc.language.isoenen
dc.publisherUniversity of Illinois
dc.rights© 2013, University of Illinois.
dc.subjectPinkall–Sterling
dc.subjectPolynomial Killing fields
dc.subject2-parameter family of embedded minimal annuli foliated by horizontal circles
dc.titleFinite type minimal annuli in S2 x Ren
dc.typeArticle (peer-reviewed)
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IJM494.pdf
Size:
478.47 KB
Format:
Adobe Portable Document Format
Description:
Published Version