Citation:O’Dwyer, C. (2004) 'Sub-100 nm Feature Definition Optimization using Cold Cs Beam Exposed Self-Assembled Monolayers on Au', 206th Meeting of the Electrochemical Society: Nanoscale Devices, Materials, and Biological Systems: Fundamental and Applications. Hilton Hawaiian Village, Honolulu, Hawaii, 3-8 October. New Jersey: The Electrochemical Society, 13, pp. 411-430.
Abstract:
The results of a study into the dependency of SAM coverage, subsequent post-etch pattern definition and minimum feature size on the quality of the Au substrate used in both physical mask and optical mask atomic nanolithographic experiments are presented in this paper. In comparison, sputtered Au substrates yield much smoother surfaces and a higher density of {111} oriented grains than evaporated Au surfaces. Phase imaging with an atomic force microscope shows that the quality and percentage coverage of uniform alkanethiol monolayer adsorption was much greater for sputtered Au surfaces. Exposure of the monolayer with a laser-cooled Cs beam allowed determination of the minimum Cs dose (2 monolayers) to expose the SAM with lateral force microscopy. Suitable wet-etching, with etch rates of 2.2 nm min-1, results in optimized pattern definition. Utilizing these optimizations, features as small as 50 nm were achieved using both a sub-100 nm physical mask and optical standing wave mask.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement