Ultrasonically powered compact implantable dust for optogenetics

Show simple item record

dc.contributor.author Laursen, Kjeld
dc.contributor.author Rashidi, Amin
dc.contributor.author Hosseini, Seyedsina
dc.contributor.author Mondal, Tanmay
dc.contributor.author Corbett, Brian
dc.contributor.author Moradi, Farshad
dc.date.accessioned 2020-07-29T11:27:52Z
dc.date.available 2020-07-29T11:27:52Z
dc.date.issued 2020-04-03
dc.identifier.citation Laursen, K., Rashidi, A., Hosseini, S., Mondal, T., Corbett, B. and Moradi, F. (2020) 'Ultrasonically powered compact implantable dust for optogenetics', IEEE Transactions on Biomedical Circuits and Systems, 14(3), pp. 583-594. doi: 10.1109/TBCAS.2020.2984921 en
dc.identifier.volume 14 en
dc.identifier.issued 3 en
dc.identifier.startpage 583 en
dc.identifier.endpage 594 en
dc.identifier.issn 1932-4545
dc.identifier.uri http://hdl.handle.net/10468/10326
dc.identifier.doi 10.1109/TBCAS.2020.2984921 en
dc.description.abstract This paper presents an ultrasonically powered microsystem for deep tissue optogenetic stimulation. All the phases in developing the prototype starting from modelling the piezoelectric crystal used for energy harvesting, design, simulation and measurement of the chip, and finally testing the whole system in a mimicking setup are explained. The developed system is composed of a piezoelectric harvesting cube, a rectifier chip, and a micro-scale custom-designed light-emitting-diode (LED), and envisioned to be used for freely moving animal studies. The proposed rectifier chip with a silicon area of 300 μm × 300 μm is implemented in standard TSMC 0.18 μm CMOS technology, for interfacing the piezoelectric cube and the microLED. Experimental results show that the proposed microsystem produces an available electrical power of 2.2 mW while loaded by a microLED, out of an acoustic intensity of 7.2 mW/mm 2 using a (1 mm) 3 crystal as the receiver. The whole system including the tested rectifier chip, a piezoelectric cube with the dimensions of (500 μm) 3 , and a μLED of 300 μm × 130 μm have been integrated on a 3 mm × 1.5 mm glass substrate, encapsulated inside a bio-compatible PDMS layer and tested successfully for final prototyping. The total volume of the fully-packaged device is estimated around 2.85 mm 3. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.rights © 2020, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Biomedical electronics en
dc.subject CMOS integrated circuits en
dc.subject Energy harvesting en
dc.subject Light emitting diodes en
dc.subject Micromechanical devices en
dc.subject Rectifiers en
dc.subject Ultrasonic therapy en
dc.subject Electrical power en
dc.subject Microscale custom-designed light-emitting-diode en
dc.subject Piezoelectric harvesting cube en
dc.subject Piezoelectric crystal en
dc.subject Deep tissue optogenetic stimulation en
dc.subject Ultrasonically powered microsystem en
dc.subject Optogenetics en
dc.subject Powered compact implantable dust en
dc.subject Tested rectifier chip en
dc.subject Piezoelectric cube en
dc.subject TSMC CMOS technology en
dc.subject Crystals en
dc.subject Integrated circuit modeling en
dc.subject Acoustics en
dc.subject Computational modeling en
dc.subject Capacitors en
dc.subject Finite element analysis en
dc.subject CMOS en
dc.subject Implantable devices en
dc.subject Piezoelectric en
dc.subject Rectifier en
dc.subject Ultrasonic powering en
dc.title Ultrasonically powered compact implantable dust for optogenetics en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Brian Corbett, Tyndall Ceo, University College Cork, Cork, Ireland. +353-21-490-3000 Email: brian.corbett@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2020-07-29T11:16:01Z
dc.description.version Accepted Version en
dc.internal.rssid 528222462
dc.contributor.funder Horizon 2020 en
dc.description.status Peer reviewed en
dc.identifier.journaltitle IEEE Transactions on Biomedical Circuits and Systems en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress brian.corbett@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::RIA/767092/EU/in vivo optogeneticS, elecTrophysiology and phArmacology with an ultRasonically-powered DUST for Parkinson's Disease/STARDUST en
dc.identifier.eissn 1940-9990


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement