Multiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologies

Show simple item record

dc.contributor.author Smallwood, Daniel C.
dc.contributor.author McCloskey, Paul
dc.contributor.author Rohan, James F.
dc.date.accessioned 2022-08-04T15:26:11Z
dc.date.available 2022-08-04T15:26:11Z
dc.date.issued 2022-07-30
dc.identifier.citation Smallwood, D. C., McCloskey, P. and Rohan, J. F. (2022) 'Multiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologies', Materials and Design, 221, 111001 (11 pp). doi: 10.1016/j.matdes.2022.111001 en
dc.identifier.volume 221 en
dc.identifier.startpage 1 en
dc.identifier.endpage 11 en
dc.identifier.issn 0264-1275
dc.identifier.uri http://hdl.handle.net/10468/13454
dc.identifier.doi 10.1016/j.matdes.2022.111001 en
dc.description.abstract 3D micro and nanoconductors have emerged as essential components of next generation energy and sensor technologies. This work investigates novel methods to tailor the topography of electroplated 3D conductive components, such as VIAs, using the FEM in COMSOL Multiphysics. This enables meeting the design specifications of flat, convex, or concave substrate-distal electroactive surfaces. Flat conductor surfaces are ideal for microbump soldering and flip-chip fabrication methods and concave/convex designs increase the number of available electrode reaction sites for sensor applications. 2D/3D multiphysics simulations are performed comprising: (1) electrochemistry modeling with the Nernst-Planck and Butler-Volmer formulations for mass transfer and reaction kinetics, and (2) a deformed geometry physics module to track the growing electrode during electrodeposition. Simulation results are compared to directly corresponding experimental work, with positive correlation. Our findings enable tailored and scalable electroactive surface processing options, which can be readily integrated into pre-existing research and industry standard operating procedures. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri https://doi.org/10.1016/j.matdes.2022.111001
dc.rights © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Multiphysics en
dc.subject Simulations en
dc.subject Modeling en
dc.subject Electroplating en
dc.subject Topography en
dc.subject Interconnect en
dc.title Multiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologies en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother James Rohan, Tyndall Microsystems, University College Cork, Cork, Ireland. +353-21-490-3000 Email: james.rohan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2022-08-04T15:22:29Z
dc.description.version Published Version en
dc.internal.rssid 622247365
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Materials and Design en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress james.rohan@tyndall.ie en
dc.identifier.articleid 111001 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3180/IE/Advanced Integrated Power Magnetics Technology- From Atoms to Systems/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement