Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides

Show simple item record

dc.contributor.author Murray, Ciarán A.
dc.contributor.author Elliott, Simon D.
dc.date.accessioned 2016-04-26T08:31:45Z
dc.date.available 2016-04-26T08:31:45Z
dc.date.issued 2013-04-01
dc.identifier.citation MURRAY, C. & ELLIOTT, S. D. 2013. Density Functional Theory Predictions of the Composition of Atomic Layer Deposition-Grown Ternary Oxides. ACS Applied Materials & Interfaces, 5, 3704-3715. http://dx.doi.org/10.1021/am400310p en
dc.identifier.volume 5 en
dc.identifier.issued 9 en
dc.identifier.startpage 3704 en
dc.identifier.endpage 3715 en
dc.identifier.issn 1944-8244
dc.identifier.uri http://hdl.handle.net/10468/2477
dc.identifier.doi 10.1021/am400310p
dc.description.abstract The surface reactivity of various metal precursors with different alkoxide, amide, and alkyl ligands during the atomic layer deposition (ALD) of ternary oxides was determined using simplified theoretical models. Quantum chemical estimations of the Bronsted reactivity of a metal complex precursor at a hydroxylated surface are made using a gas-phase hydrolysis model. The geometry optimized structures and energies for a large suite of 17 metal precursors (including cations of Mg, Ca, Sr, Sc, Y, La, Ti, Zr, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Ga) with five different anionic ligands (conjugate bases of tert-butanol, tetramethyl heptanedione, dimethyl amine, isopropyl amidine, and methane) and the corresponding hydrolyzed complexes are calculated using density functional theory (DFT) methods. The theoretically computed energies are used to determine the energetics of the model reactions. These DFT models of hydrolysis are used to successfully explain the reactivity and resulting stoichiometry in terms of metal cation ratios seen experimentally for a variety of ALD-grown ternary oxide systems. en
dc.description.sponsorship Science Foundation Ireland (SFI Grant 09.IN1.I2628) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society en
dc.relation.uri http://pubs.acs.org/doi/abs/10.1021/am400310p
dc.rights © 2013 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/am400310p en
dc.subject Density functional theory en
dc.subject Ternary oxides en
dc.subject Stoichiometry en
dc.subject Metal precursors en
dc.subject Ligand en
dc.subject Atomic layer deposition (ALD) en
dc.title Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Simon Elliott, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: simon.elliott@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2015-04-13T16:10:50Z
dc.description.version Accepted Version en
dc.internal.rssid 230018766
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle ACS Applied Materials & Interfaces en
dc.internal.copyrightchecked Yes embargo period over. !!CORA!! AV+12 month embargo+set statement. en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress simon.elliott@tyndall.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement