Heterogeneously grown tunable group-IV laser on silicon

Show simple item record

dc.contributor.author Hudait, Mantu
dc.contributor.author Clavel, M. B.
dc.contributor.author Lester, L.
dc.contributor.author Saladukha, Dzianis
dc.contributor.author Ochalski, Tomasz J.
dc.contributor.author Murphy-Armando, Felipe
dc.contributor.editor Razeghi, Manijeh
dc.date.accessioned 2016-10-05T13:06:08Z
dc.date.available 2016-10-05T13:06:08Z
dc.date.issued 2016-02
dc.identifier.citation HUDAIT, M., CLAVEL, M., LESTER, L., SALADUKHA, D., OCHALSKI, T. & MURPHY-ARMANDO, F. 2016. Heterogeneously grown tunable group-IV laser on silicon. In: Razeghi, Manijeh eds. Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII 13 February. San Francisco, California: SPIE doi:10.1117/12.2218364 en
dc.identifier.uri http://hdl.handle.net/10468/3157
dc.identifier.doi 10.1117/12.2218364
dc.description.abstract Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si. en
dc.description.sponsorship National Science Foundation, United States (ECCS-1348653, ECCS-150795)
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Society of Photo-Optical Instrumentation Engineers (SPIE) en
dc.relation.ispartof Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII
dc.relation.uri http://dx.doi.org/10.1117/12.2218364
dc.rights Copyright 2016. Society of Photo Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. en
dc.subject Lasers en
dc.subject Silicon en
dc.subject Molecular beam epitaxy en
dc.subject Gallium arsenide en
dc.subject Wavelength tuning en
dc.subject X-rays en
dc.subject Thin films en
dc.subject Germanium en
dc.subject Indium en
dc.subject Electrons en
dc.subject Tensile strain en
dc.subject Heterogeneous en
dc.subject MBE en
dc.subject InGaAs en
dc.title Heterogeneously grown tunable group-IV laser on silicon en
dc.type Conference item en
dc.internal.authorcontactother Felipe Murphy-Armando, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: f.murphyarmando@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2016-10-05T12:23:13Z
dc.description.version Published Version en
dc.internal.rssid 366740370
dc.contributor.funder National Science Foundation, United States
dc.description.status Peer reviewed en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.conferencelocation San Francisco, California, United States en
dc.internal.IRISemailaddress f.murphyarmando@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement