Theory and optimisation of 1.3 and 1.55 μm (Al)InGaAs metamorphic quantum well lasers

Show simple item record Broderick, Christopher A. Bogusevschi, Silviu O'Reilly, Eoin P. 2016-11-09T16:37:13Z 2016-11-09T16:37:13Z 2016-07
dc.identifier.citation C. A. Broderick, S. Bogusevschi and E. P. O'Reilly, "Theory and optimisation of 1.3 and 1.55 μm (Al)InGaAs metamorphic quantum well lasers," 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Sydney, NSW, 2016, pp. 19-20. doi: 10.1109/NUSOD.2016.7546993 en
dc.identifier.startpage 19 en
dc.identifier.endpage 20 en
dc.identifier.isbn 978-1-4673-8603-6
dc.identifier.isbn 978-1-4673-8604-3
dc.identifier.issn 2158-3242
dc.identifier.doi 10.1109/NUSOD.2016.7546993
dc.description.abstract The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices. en
dc.description.sponsorship Science Foundation Ireland (Irish Photonic Integration Centre (I-PIC, project nos. 12/RC/2276, 10/IN.1/I2994)); Engineering and Physical Sciences Research Council (project no. EP/K029665/1) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher IEEE en
dc.relation.ispartof 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
dc.rights © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Aluminium compounds en
dc.subject Current density en
dc.subject Gallium arsenide en
dc.subject Indium compounds en
dc.subject Optical design techniques en
dc.subject Optical fabrication en
dc.subject Optical materials en
dc.subject Quantum well lasers en
dc.subject (Al)InGaAs en
dc.subject GaAs en
dc.subject GaAs-based (Al)InGaAs metamorphic quantum well lasers en
dc.subject GaAs-based long-wavelength semiconductor lasers en
dc.subject High differential gain en
dc.subject Lattice-mismatched heterostructure growth en
dc.subject Low threshold current densities en
dc.subject Optical confinement en
dc.subject Wavelength 1.3 mum en
dc.subject Wavelength 1.55 mum en
dc.subject Indium gallium arsenide en
dc.subject Laser theory en
dc.subject Metals en
dc.subject Performance evaluation en
dc.subject Semiconductor lasers en
dc.subject Substrates en
dc.title Theory and optimisation of 1.3 and 1.55 μm (Al)InGaAs metamorphic quantum well lasers en
dc.type Conference item en
dc.internal.authorcontactother Silviu Bogusevschi, Studentships, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2016-11-03T22:21:07Z
dc.description.version Accepted Version en
dc.internal.rssid 370432097
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Engineering and Physical Sciences Research Council en
dc.description.status Not peer reviewed en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.conferencelocation Sydney en
dc.internal.IRISemailaddress en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement