Mobility improvement in nanowire junctionless transistors by uniaxial strain

Show simple item record

dc.contributor.author Raskin, Jean-Pierre
dc.contributor.author Colinge, Jean-Pierre
dc.contributor.author Ferain, Isabelle
dc.contributor.author Kranti, Abhinav
dc.contributor.author Lee, Chi-Woo
dc.contributor.author Akhavan, Nima Dehdashti
dc.contributor.author Yan, Ran
dc.contributor.author Razavi, Pedram
dc.contributor.author Yu, Ran
dc.date.accessioned 2017-07-28T11:22:08Z
dc.date.available 2017-07-28T11:22:08Z
dc.date.issued 2010
dc.identifier.citation Raskin, J.-P., Colinge, J.-P., Ferain, I., Kranti, A., Lee, C.-W., Akhavan, N. D., Yan, R., Razavi, P. and Yu, R. (2010) 'Mobility improvement in nanowire junctionless transistors by uniaxial strain', Applied Physics Letters, 97(4), pp. 042114. doi: 10.1063/1.3474608 en
dc.identifier.volume 97
dc.identifier.issued 4
dc.identifier.startpage 1
dc.identifier.endpage 3
dc.identifier.issn 0003-6951
dc.identifier.issn 1077-3118
dc.identifier.uri http://hdl.handle.net/10468/4339
dc.identifier.doi 10.1063/1.3474608
dc.description.abstract Improvement of current drive in n- and p-type silicon junctionless metal-oxide-semiconductor-field-effect-transistors (MOSFETs) using strain is demonstrated. Junctionless transistors have heavily doped channels with doping concentrations in excess of 10(19) cm(-3) and feature bulk conduction, as opposed to surface channel conduction. The extracted piezoresistance coefficients are in good agreement with the piezoresistive theory and the published coefficients for bulk silicon even for 10 nm thick silicon nanowires as narrow as 20 nm. These experimental results demonstrate the possibility of enhancing mobility in heavily doped silicon junctionless MOSFETs using strain technology. (C) 2010 American Institute of Physics. (doi:10.1063/1.3474608) en
dc.description.sponsorship Science Foundation Ireland (Grant No. 05/IN/I888); Higher Education Authority (Programme for Research in Third-Level Institutions) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.3474608
dc.rights © 2010 American Institute of Physics.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Raskin, J.-P., Colinge, J.-P., Ferain, I., Kranti, A., Lee, C.-W., Akhavan, N. D., Yan, R., Razavi, P. and Yu, R. (2010) 'Mobility improvement in nanowire junctionless transistors by uniaxial strain', Applied Physics Letters, 97(4), pp. 042114 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3474608 en
dc.subject Doping profiles en
dc.subject Elemental semiconductors en
dc.subject MOSFETs en
dc.subject Nanowires en
dc.subject Piezoresistive devices en
dc.subject Semiconductor quantum wires en
dc.subject Silicon en
dc.subject Carrier mobility en
dc.title Mobility improvement in nanowire junctionless transistors by uniaxial strain en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Pedram Razavi, Tyndall National Institute, University College Cork, Cork, Ireland +353 (0)21 2346675, Email: pedram.razavi@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.wokid WOS:000281059200053
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder Higher Education Authority
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.IRISemailaddress pedram.razavi@tyndall.ie en
dc.identifier.articleid 42114
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/216171/EU/Silicon-based nanostructures and nanodevices for long term nanoelectronics applications/NANOSIL
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/216373/EU/European platform for low-power applications on Silicon-on-Insulator Technology/EUROSOI+


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement