Trapped surfaces in spherical expanding open universes

Show simple item record Uwe Brauer Malec, Edward Ó Murchadha, Niall 2017-08-29T09:14:26Z 2017-08-29T09:14:26Z 1994
dc.identifier.citation Brauer, U., Malec, E. and Ó Murchadha, N. (1994) 'Trapped surfaces in spherical expanding open universes', Physical Review D, 49(10), 5601-5603 (3pp). doi: 10.1103/PhysRevD.49.5601 en
dc.identifier.volume 49
dc.identifier.issued 10
dc.identifier.startpage 5601
dc.identifier.endpage 5603
dc.identifier.issn 0556-2821
dc.identifier.doi 10.1103/PhysRevD.49.5601
dc.description.abstract Consider spherically symmetric initial data for a cosmology which, in the large part, approximates an open k = - 1, LAMBDA = 0 Friedmann-Lemeitre universe. further assume that the data are chosen so that the trace of the extrinsic curvature is a constant and that the matter field is at rest at this instant of time. One expects that no trapped surfaces appear in the data if no significant clump of excess matter is to be found. This Brief Report confirms this belief by displaying a necessary condition for the existence of trapped surfaces. This necessary condition, simply stated, says that a relatively large amount of excess-matter must be concentrated in a small volume for trapped surfaces to appear. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © 1994, American Physical Society en
dc.subject Stars en
dc.title Trapped surfaces in spherical expanding open universes en
dc.type Note en
dc.internal.authorcontactother Niall Ó Murchadha, Physics, University College Cork, Cork, Ireland. +353-21-490-3000. Email: en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.wokid WOS:A1994NN99000073
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review D en
dc.internal.IRISemailaddress en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement