Highly-ordered growth of solution-processable ZnO for thin film transistors

Show simple item record

dc.contributor.author Buckley, Darragh
dc.contributor.author McNulty, David
dc.contributor.author Zubialevich, Vitaly Z.
dc.contributor.author Parbrook, Peter J.
dc.contributor.author O'Dwyer, Colm
dc.date.accessioned 2018-05-22T11:32:47Z
dc.date.available 2018-05-22T11:32:47Z
dc.date.issued 2017-05
dc.identifier.citation Buckley, D., McNulty, D., Zubialevich, V. Z., Parbrook, P. J. and O'Dwyer, C. (2017) 'Highly-Ordered Growth of Solution-Processable ZnO for Thin Film Transistors', ECS Transactions, 77(4), pp. 99-107. doi: 10.1149/07704.0099ecs en
dc.identifier.volume 77 en
dc.identifier.startpage 99 en
dc.identifier.endpage 107 en
dc.identifier.issn 1938-5862
dc.identifier.issn 1938-6737
dc.identifier.uri http://hdl.handle.net/10468/6173
dc.identifier.doi 10.1149/07704.0099ecst
dc.description.abstract We demonstrate that crystalline, epitaxial-like and highly ordered ZnO thin films and quasi-superlattice structures can be achieved from a precursor liquid at relatively low temperature via spin-coating. The synthesised films are smooth, stoichiometric ZnO with controllable thickness. An iterative layer-by-layer coating schematic is employed to demonstrate the effects of film thickness on structure, morphology as well as the surface and internal defects. Characterisation of the crystallinity, morphology, O-vacancy formation, stoichiometry, surface roughness and thickness variation was determined through X-ray diffraction, scanning and transmission electron and atomic force microscopy, X-ray photoelectron and photoluminescence spectroscopy. We demonstrate that iterative spin-coating of deposited ZnO films results in a transition in crystal texture with increasing thickness (number of layers) from the [ ] m-plane to the [ ] c-plane. The films attain a c-axis preferential orientation, with no other crystalline peaks present. Results show that the film’s surface morphology was very smooth, with average rms roughness <0.15 nm. Examination of these films also shows the consistency of the surface composition and defect level while highlighting the effect of temperature and cumulative annealing condition on the internal defect concentration. en
dc.description.sponsorship Irish Research Council (award GOIPG/2014/206); en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Electrochemical Society en
dc.relation.uri http://ecst.ecsdl.org/content/77/4/99.abstract
dc.rights © 2017 ECS - The Electrochemical Society en
dc.subject Thin films en
dc.subject Annealing condition en
dc.subject Effect of temperature en
dc.subject Preferential orientation en
dc.subject Solution processable en
dc.subject Super-lattice structures en
dc.subject Thickness variation en
dc.subject Transmission electron en
dc.subject X-ray photoelectrons en
dc.subject Atomic force microscopy en
dc.subject Coatings en
dc.subject Crystalline materials en
dc.subject Film growth en
dc.subject Metallic films en
dc.subject Morphology en
dc.subject Photoluminescence spectroscopy en
dc.subject Surface defects en
dc.subject Surface roughness en
dc.subject Temperature en
dc.subject Thin film circuits en
dc.subject X ray diffraction en
dc.subject Zinc oxide en
dc.title Highly-ordered growth of solution-processable ZnO for thin film transistors en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: c.odwyer@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-05-16T00:48:29Z
dc.description.version Accepted Version en
dc.internal.rssid 398814443
dc.contributor.funder Irish Research Council en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle ECS Transactions en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress c.odwyer@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/15/TIDA/2893/IE/Advanced Battery Materials for High Volumetric Energy Density Li-ion Batteries for Remote Off-Grid Power/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement