Evaluating the surface chemistry of black phosphorus during ambient degradation

Show simple item record

dc.contributor.author van Druenen, Maart
dc.contributor.author Davitt, Fionán
dc.contributor.author Collins, Timothy W.
dc.contributor.author Glynn, Colm
dc.contributor.author O'Dwyer, Colm
dc.contributor.author Holmes, Justin D.
dc.contributor.author Collins, Gillian
dc.date.accessioned 2019-01-22T12:12:18Z
dc.date.available 2019-01-22T12:12:18Z
dc.date.issued 2019-01-14
dc.identifier.citation van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J. D. and Collins, G. (2019) 'Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation', Langmuir, 35(6), pp. 2172-2178. doi:10.1021/acs.langmuir.8b04190 en
dc.identifier.volume 35
dc.identifier.startpage 2172
dc.identifier.endpage 2178
dc.identifier.issn 0743-7463
dc.identifier.issn 1520-5827
dc.identifier.uri http://hdl.handle.net/10468/7340
dc.identifier.doi 10.1021/acs.langmuir.8b04190
dc.description.abstract Black Phosphorus (BP) is emerging as a promising candidate for electronic, optical and energy storage applications, however its poor ambient stability remains a critical challenge. Evaluation of few-layer liquid exfoliated BP during ambient exposure using x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) allows its surface chemistry to be investigated. Oxidation of liquid exfoliated few-layer BP initially occurs through non-bridged oxide species, which convert to bridged oxide species after ambient exposure. We demonstrate the instability of these bridged oxide species which undergo hydrolysis to form volatile phosphorus oxides and evaporate from the BP surface. FTIR spectroscopy, scanning transmission electron microscopy and atomic force microscopy were used to confirm the formation of liquid oxides through a continuous oxidation cycle that results in the decomposition of BP. Furthermore, we show that the instability of few-layer BP originates from the formation of bridged oxide species. en
dc.description.sponsorship Irish Research Council (Government of Ireland Postgraduate Scholarship Programme - grant number GOIPG/2015/2933) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society en
dc.relation.uri https://pubs.acs.org/doi/10.1021/acs.langmuir.8b04190 en
dc.rights © 2019, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.8b04190 en
dc.subject Black phosphorus en
dc.subject 2D materials en
dc.subject Phosphorene en
dc.subject Ambient stability en
dc.subject Degradation en
dc.subject Oxidation en
dc.subject X-ray photoelectron spectroscopy en
dc.subject Fourier transform infrared spectroscopy en
dc.title Evaluating the surface chemistry of black phosphorus during ambient degradation en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: c.odwyer@ucc.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2020-01-14
dc.date.updated 2019-01-22T11:58:09Z
dc.description.version Accepted Version en
dc.internal.rssid 470484036
dc.internal.rssid 470484041
dc.contributor.funder Irish Research Council en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Langmuir en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress c.odwyer@ucc.ie en
dc.internal.IRISemailaddress j.holmes@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/15/TIDA/2893/IE/Advanced Battery Materials for High Volumetric Energy Density Li-ion Batteries for Remote Off-Grid Power/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement