Full text restriction information:Access to this article is restricted until 24 months after publication by request of the publisher.
Restriction lift date:2020-12-23
Citation:Carballo, R., Arean, N., Álvarez, M., López, I., Castro, A., López, M. and Iglesias, G. (2019) 'Wave farm planning through high-resolution resource and performance characterization', Renewable Energy, 135, pp. 1097-1107. doi: 10.1016/j.renene.2018.12.081
Wave farm planning in a coastal region should lead to the selection of: i) the type of technology of wave energy converter (WEC) providing the highest performance at specific sites and ii) the sites for wave farm operation allowing an integrated coastal zone management (ICZM). On these bases, the deployment of a wave farm should be based on an accurate analysis of the performance of different WECs at coastal locations where wave energy exploitation does not interfere with other coastal uses, and the environmental impact is minimised (or positive, e.g. allowing coastal protection). With this in view, in this piece of research the intra-annual performance of various WECs of the same type (buoy-type) is computed at different locations in NW Spain allowing an ICZM perspective. For this purpose, the intra-annual version of WEDGE-p® (Wave Energy Diagram Generator – performance) tool is implemented. The results show that, as opposed to previous analysis on WECs with different principle of operation, the level of performance of buoy-type WECs at specific locations may present strong similarities. In this case, an accurate computation of different performance parameters along with their joint analysis emerge as a prerequisite for an informed decision-making.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement