Citation:Wu, X., Kulkarni, J. S., Collins, G., Petkov, N., Almécija, D., Boland, J. J., Erts, D. and Holmes, J. D. (2008) 'Synthesis and Electrical and Mechanical Properties of Silicon and Germanium Nanowires', Chemistry of Materials, 20(19), pp. 5954-5967. doi: 10.1021/cm801104s
The development of semiconductor nanowires has recently been the focus of extensive research as these structures may play an important role in the next generation of nanoscale devices. Using semiconductor nanowires as building blocks, a number of high performance electronic devices have been fabricated. In this review, we discuss synthetic methodologies and electrical characteristics of Si, Ge, and Ge/Si core/shell nanowires. In particular the fabrication and electrical properties of a variety of nanowire-based field effect transistors (FETs) are discussed. Although the bottom-up approach has the potential to go far beyond the limits of top-down technology, new techniques need to be developed to realize precise control of structural parameters, such as size uniformity, growth direction, and dopant distribution within nanowires to produce nanowire-based electronics on a large scale.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement