Stretching the equilibrium limit of Sn in Ge1–xSnx nanowires: implications for field effect transistors

dc.contributor.authorBiswas, Subhajit
dc.contributor.authorDoherty, Jessica
dc.contributor.authorGalluccio, Emmanuele
dc.contributor.authorManning, Hugh G.
dc.contributor.authorConroy, Michele
dc.contributor.authorDuffy, Ray
dc.contributor.authorBangert, Ursel
dc.contributor.authorBoland, John J.
dc.contributor.authorHolmes, Justin D.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Research Councilen
dc.date.accessioned2021-05-18T15:36:21Z
dc.date.available2021-05-18T15:36:21Z
dc.date.issued2021-02-03
dc.date.updated2021-05-18T09:32:36Z
dc.description.abstractGe1–xSnx nanowires incorporating a large amount of Sn would be useful for mobility enhancement in nanoelectronic devices, a definitive transition to a direct bandgap for application in optoelectronic devices and to increase the efficiency of the GeSn-based photonic devices. Here we report the catalytic bottom-up fabrication of Ge1–xSnx nanowires with very high Sn incorporation (x > 0.3). These nanowires are grown in supercritical toluene under high pressure (21 MPa). The introduction of high pressure in the vapor–liquid–solid (VLS) like growth regime resulted in a substantial increase of Sn incorporation in the nanowires, with a Sn content ranging between 10 and 35 atom %. The incorporation of Sn in the nanowires was found to be inversely related to nanowire diameter; a high Sn content of 35 atom % was achieved in very thin Ge1–xSnx nanowires with diameters close to 20 nm. Sn was found to be homogeneously distributed throughout the body of the nanowires, without apparent clustering or segregation. The large inclusion of Sn in the nanowires could be attributed to the nanowire growth kinetics and small nanowire diameters, resulting in increased solubility of Sn in Ge at the metastable liquid–solid interface under high pressure. Electrical investigation of the Ge1–xSnx (x = 0.10) nanowires synthesized by the supercritical fluid approach revealed their potential in nanoelectronics and sensor-based applications.en
dc.description.sponsorshipScience Foundation Ireland ((SFI 16/US/3344), (SFI Industry Fellowship (18/IF/6282), (SFI 16/IA/4462)); Irish Research Council (Postgraduate Scholarship (Grant GOIPG/2015/2772))en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBiswas, S., Doherty, J., Galluccio, E., Manning, H. G., Conroy, M., Duffy, R., Bangert, U., Boland, J. J. and Holmes, J. D. (2021) 'Stretching the Equilibrium Limit of Sn in Ge1–xSnx Nanowires: Implications for Field Effect Transistors', ACS Applied Nano Materials, 4(2), pp. 1048-1056. doi: 10.1021/acsanm.0c02569en
dc.identifier.doi10.1021/acsanm.0c02569en
dc.identifier.endpage1056en
dc.identifier.issn2574-0970
dc.identifier.issued2en
dc.identifier.journaltitleACS Applied Nano Materialsen
dc.identifier.startpage1048en
dc.identifier.urihttps://hdl.handle.net/10468/11352
dc.identifier.volume4en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP2::ERC/321160/EU/Cognitive Networks for Intelligent Materials and Devices/COGNETen
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsanm.0c02569
dc.rights© 2021 American Chemical Societyen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectBottom-up growthen
dc.subjectSupercritical fluiden
dc.subjectField-effect transistoren
dc.subjectGermanium-tinen
dc.subjectNonequilibrium alloyen
dc.titleStretching the equilibrium limit of Sn in Ge1–xSnx nanowires: implications for field effect transistorsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Biswas_et._al._manuscript-revised(ID_an-2020-02569r2)_(1).docx
Size:
5.81 MB
Format:
Microsoft Word XML
Description:
Author's original
Loading...
Thumbnail Image
Name:
acsanm.0c02569.pdf
Size:
5.22 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
an0c02569_si_001.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: