Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation

Thumbnail Image
KBT_MicrobiotaPV2013.pdf(1.14 MB)
Published Version
journal.pone.0082432.s001.PDF(455.1 KB)
Additional File 1: Figure S1.
journal.pone.0082432.s002.PDF(1.96 KB)
Additional File 2: Figure S2.
journal.pone.0082432.s003.PDF(282.47 KB)
Additional File 3: Figure S3.
journal.pone.0082432.s004.PDF(357.61 KB)
Additional File 4: Figure S4.
Twomey, Kate B.
Alston, Mark
An, Shi-Qi
O'Connell, Oisin J.
McCarthy, Yvonne
Swarbreck, David
Febrer, Melanie
Dow, J. Maxwell
Plant, Barry J.
Ryan, Robert P.
Journal Title
Journal ISSN
Volume Title
Public Library of Science
Research Projects
Organizational Units
Journal Issue
Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA-and RNA-based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.
Bronchoalveolar lavage fluid , Pseudomonas aeruginosa , Lung infections , Sputum , Pathogenesis , Biomarkers , Tolerance , Diversity , Cells
Twomey KB, Alston M, An S-Q, O'Connell OJ, McCarthy Y, Swarbreck D, et al. (2013) Microbiota and Metabolite Profiling Reveal Specific Alterations in Bacterial Community Structure and Environment in the Cystic Fibrosis Airway during Exacerbation. PLoS ONE 8(12): e82432. doi:10.1371/journal.pone.0082432