Leprechauns on the chessboard
dc.contributor.author | Escamocher, Guillaume | |
dc.contributor.author | O'Sullivan, Barry | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2021-02-19T15:48:50Z | |
dc.date.available | 2021-02-19T15:48:50Z | |
dc.date.issued | 2021-02-05 | |
dc.date.updated | 2021-02-19T15:38:40Z | |
dc.description.abstract | We introduce in this paper leprechauns, fairy chess pieces that can move either like the standard queen, or to any tile within k king moves. We then study the problem of placing n leprechauns on an n×n chessboard. When k=1, this is equivalent to the standard n-Queens Problem. We solve the problem for k=2, as well as for k>2 and n≤(k+1)2, giving in the process an upper bound on the lowest non-trivial value of n such that the (k,n)-Leprechauns Problem is satisfiable. Solving this problem for all k would be equivalent to solving the diverse n-Queens Problem, the variant of the n-Queens Problem where the distance between the two closest queens is maximized. While diversity has been a popular topic in other constraint problems, this is not the case for the n-Queens Problem, making our results the first major ones in the domain. | en |
dc.description.sponsorship | Science Foundation Ireland (under Grant number 12/RC/2289-P2, which is co-funded under the European Regional Development Fund) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 112316 | en |
dc.identifier.citation | Escamocher, G. and O’Sullivan, B. (2021) 'Leprechauns on the chessboard', Discrete Mathematics, 344(5), 112316 (17 pp). doi: 10.1016/j.disc.2021.112316 | en |
dc.identifier.doi | 10.1016/j.disc.2021.112316 | en |
dc.identifier.endpage | 17 | en |
dc.identifier.issn | 0012-365X | |
dc.identifier.issued | 5 | en |
dc.identifier.journaltitle | Discrete Mathematics | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/11079 | |
dc.identifier.volume | 344 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0012365X21000297 | |
dc.rights | © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Assignment diversity | en |
dc.subject | Constraint satisfaction | en |
dc.subject | n-Queens Problem | en |
dc.title | Leprechauns on the chessboard | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0012365X21000297-main.pdf
- Size:
- 585.33 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: