Architected porous metals in electrochemical energy storage
dc.contributor.author | Egorov, Vladimir | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.funder | Enterprise Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2020-03-30T11:09:32Z | |
dc.date.available | 2020-03-30T11:09:32Z | |
dc.date.issued | 2020-02-21 | |
dc.date.updated | 2020-03-27T18:25:48Z | |
dc.description.abstract | Porous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices. | en |
dc.description.sponsorship | Enterprise Ireland Commercialisation Fund as part of the European Regional Development Fund (under contract no. CF2018-0839-P); Irish Research Council (Advanced Laureate Award under grant no. IRCLA/2019/118) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Egorov, V., and O'Dwyer, C. (2020) 'Architected porous metals in electrochemical energy storage'. Current Opinion in Electrochemistry, 21, pp. 201-208. doi: 10.1016/j.coelec.2020.02.011 | en |
dc.identifier.doi | 10.1016/j.coelec.2020.02.011 | en |
dc.identifier.endpage | 208 | en |
dc.identifier.issn | 2451-9103 | |
dc.identifier.journaltitle | Current Opinion in Electrochemistry | en |
dc.identifier.startpage | 201 | en |
dc.identifier.uri | https://hdl.handle.net/10468/9789 | |
dc.identifier.volume | 21 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::RIA/825114/EU/Smart Autonomous Multi Modal Sensors for Vital Signs Monitoring/SmartVista | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ | en |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S2451910320300363 | |
dc.rights | © 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/). | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Porous metals | en |
dc.subject | Current collector | en |
dc.subject | Additive manufacturing (AM) | en |
dc.subject | Metal foams | en |
dc.subject | Electrochemical energy storage (EES) | en |
dc.subject | Batteries | en |
dc.subject | Supercapacitors | en |
dc.subject | Metallic lattice | en |
dc.subject | 3D printing | en |
dc.title | Architected porous metals in electrochemical energy storage | en |
dc.type | Article (peer-reviewed) | en |