Architected porous metals in electrochemical energy storage

dc.contributor.authorEgorov, Vladimir
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderEnterprise Irelanden
dc.contributor.funderEuropean Regional Development Funden
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2020-03-30T11:09:32Z
dc.date.available2020-03-30T11:09:32Z
dc.date.issued2020-02-21
dc.date.updated2020-03-27T18:25:48Z
dc.description.abstractPorous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices.en
dc.description.sponsorshipEnterprise Ireland Commercialisation Fund as part of the European Regional Development Fund (under contract no. CF2018-0839-P); Irish Research Council (Advanced Laureate Award under grant no. IRCLA/2019/118)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEgorov, V., and O'Dwyer, C. (2020) 'Architected porous metals in electrochemical energy storage'. Current Opinion in Electrochemistry, 21, pp. 201-208. doi: 10.1016/j.coelec.2020.02.011en
dc.identifier.doi10.1016/j.coelec.2020.02.011en
dc.identifier.endpage208en
dc.identifier.issn2451-9103
dc.identifier.journaltitleCurrent Opinion in Electrochemistryen
dc.identifier.startpage201en
dc.identifier.urihttps://hdl.handle.net/10468/9789
dc.identifier.volume21en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/825114/EU/Smart Autonomous Multi Modal Sensors for Vital Signs Monitoring/SmartVistaen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2451910320300363
dc.rights© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectPorous metalsen
dc.subjectCurrent collectoren
dc.subjectAdditive manufacturing (AM)en
dc.subjectMetal foamsen
dc.subjectElectrochemical energy storage (EES)en
dc.subjectBatteriesen
dc.subjectSupercapacitorsen
dc.subjectMetallic latticeen
dc.subject3D printingen
dc.titleArchitected porous metals in electrochemical energy storageen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2451910320300363-main.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: