A framework for AI-assisted detection of Patent Ductus Arteriosus from neonatal phonocardiogram
dc.contributor.author | Gómez-Quintana, Sergi | |
dc.contributor.author | Schwarz, Christoph E. | |
dc.contributor.author | Shelevytsky, Ihor | |
dc.contributor.author | Shelevytska, Victoriya | |
dc.contributor.author | Semenova, Oksana | |
dc.contributor.author | Factor, Andreea | |
dc.contributor.author | Popovici, Emanuel | |
dc.contributor.author | Temko, Andriy | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | en |
dc.contributor.funder | Wellcome Trust | en |
dc.contributor.funder | Grand Challenges Canada | en |
dc.date.accessioned | 2022-08-03T14:39:40Z | |
dc.date.available | 2022-08-03T14:39:40Z | |
dc.date.issued | 2021-02-05 | |
dc.date.updated | 2022-08-03T14:28:01Z | |
dc.description.abstract | The current diagnosis of Congenital Heart Disease (CHD) in neonates relies on echocardiography. Its limited availability requires alternative screening procedures to prioritise newborns awaiting ultrasound. The routine screening for CHD is performed using a multidimensional clinical examination including (but not limited to) auscultation and pulse oximetry. While auscultation might be subjective with some heart abnormalities not always audible it increases the ability to detect heart defects. This work aims at developing an objective clinical decision support tool based on machine learning (ML) to facilitate differentiation of sounds with signatures of Patent Ductus Arteriosus (PDA)/CHDs, in clinical settings. The heart sounds are pre-processed and segmented, followed by feature extraction. The features are fed into a boosted decision tree classifier to estimate the probability of PDA or CHDs. Several mechanisms to combine information from different auscultation points, as well as consecutive sound cycles, are presented. The system is evaluated on a large clinical dataset of heart sounds from 265 term and late-preterm newborns recorded within the first six days of life. The developed system reaches an area under the curve (AUC) of 78% at detecting CHD and 77% at detecting PDA. The obtained results for PDA detection compare favourably with the level of accuracy achieved by an experienced neonatologist when assessed on the same cohort. | en |
dc.description.sponsorship | Science Foundation Ireland (Centre for Research Training in Artificial Intelligence under Grant No 18/CRT/6223; TIDA 17/TIDA/504); Wellcome Trust Seed Award 200704/Z/16/Z); Grand Challenges Canada (R-ST-POC-1707-07709); Deutsche Forschungsgemeinschaft (420536451) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 169 | en |
dc.identifier.citation | Gómez-Quintana, S., Schwarz, C. E., Shelevytsky, I., Shelevytska, V., Semenova, O.,Factor, A., Popovici, E. and Temko, A. (2021) 'A framework for AI-assisted detection of Patent Ductus Arteriosus from neonatal phonocardiogram', Healthcare, 9(2), 169 (19pp). doi: 10.3390/healthcare9020169 | en |
dc.identifier.doi | 10.3390/healthcare9020169 | en |
dc.identifier.eissn | 2227-9032 | |
dc.identifier.endpage | 19 | en |
dc.identifier.issued | 2 | en |
dc.identifier.journaltitle | Healthcare | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13450 | |
dc.identifier.volume | 9 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | © 2021, the Authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Heart sound | en |
dc.subject | Neonates | en |
dc.subject | Congenital heart defects | en |
dc.subject | Machine learning | en |
dc.subject | Boosted decision trees | en |
dc.subject | Patent ductus arteriosus | en |
dc.subject | Phonocardiogram | en |
dc.title | A framework for AI-assisted detection of Patent Ductus Arteriosus from neonatal phonocardiogram | en |
dc.type | Article (peer-reviewed) | en |