An evaluation of information online on artificial intelligence in medical imaging

dc.contributor.authorMulryan, Philip
dc.contributor.authorNi Chleirigh, Naomi
dc.contributor.authorO'Mahony, Alexander T.
dc.contributor.authorCrowley, Claire
dc.contributor.authorRyan, David
dc.contributor.authorMcLaughlin, Patrick
dc.contributor.authorMcEntee, Mark F.
dc.contributor.authorMaher, Michael
dc.contributor.authorO'Connor, Owen J.
dc.date.accessioned2022-05-09T09:05:40Z
dc.date.available2022-05-09T09:05:40Z
dc.date.issued2022-04-25
dc.date.updated2022-05-06T10:29:47Z
dc.description.abstractBackground: Opinions seem somewhat divided when considering the effect of artificial intelligence (AI) on medical imaging. The aim of this study was to characterise viewpoints presented online relating to the impact of AI on the field of radiology and to assess who is engaging in this discourse. Methods: Two search methods were used to identify online information relating to AI and radiology. Firstly, 34 terms were searched using Google and the first two pages of results for each term were evaluated. Secondly, a Rich Search Site (RSS) feed evaluated incidental information over 3 weeks. Webpages were evaluated and categorized as having a positive, negative, balanced, or neutral viewpoint based on study criteria. Results: Of the 680 webpages identified using the Google search engine, 248 were deemed relevant and accessible. 43.2% had a positive viewpoint, 38.3% a balanced viewpoint, 15.3% a neutral viewpoint, and 3.2% a negative viewpoint. Peer-reviewed journals represented the most common webpage source (48%), followed by media (29%), commercial sources (12%), and educational sources (8%). Commercial webpages had the highest proportion of positive viewpoints (66%). Radiologists were identified as the most common author group (38.9%). The RSS feed identified 177 posts of which were relevant and accessible. 86% of posts were of media origin expressing positive viewpoints (64%). Conclusion: The overall opinion of the impact of AI on radiology presented online is a positive one. Consistency across a range of sources and author groups exists. Radiologists were significant contributors to this online discussion and the results may impact future recruitment.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid79en
dc.identifier.citationMulryan, P., Ni Chleirigh, N., O’Mahony, A. T., Crowley, C., Ryan, D., McLaughlin, P., McEntee, M., Maher, M. and O’Connor, O. J. (2022) ‘An evaluation of information online on artificial intelligence in medical imaging’, Insights into Imaging 13, 79 (11pp). doi: 10.1186/s13244-022-01209-4en
dc.identifier.doi10.1186/s13244-022-01209-4en
dc.identifier.eissn1869-4101
dc.identifier.endpage11en
dc.identifier.journaltitleInsights into Imagingen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13153
dc.identifier.volume13en
dc.language.isoenen
dc.publisherSpringer Nature Switzerland AGen
dc.rights© 2022, the Authors. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectAIen
dc.subjectRadiologyen
dc.subjectArtificial intelligence in radiologyen
dc.subjectPerspectives on evolution of radiologyen
dc.subjectFuture impact on the radiologisten
dc.subjectRadiology recruitmenten
dc.subjectRadiology efficiencyen
dc.titleAn evaluation of information online on artificial intelligence in medical imagingen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
insight_AI_in_radiology.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
13244_2022_1209_MOESM1_ESM.docx
Size:
28.97 KB
Format:
Microsoft Word XML
Description:
Additional File 1
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: