Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel
dc.contributor.author | Ahmed, Rehan | |
dc.contributor.author | Temko, Andriy | |
dc.contributor.author | Marnane, William P. | |
dc.contributor.author | Boylan, Geraldine B. | |
dc.contributor.author | Lightbody, Gordon | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2017-01-31T15:21:14Z | |
dc.date.available | 2017-01-31T15:21:14Z | |
dc.date.issued | 2017-01-26 | |
dc.description.abstract | Seizure events in newborns change in frequency, morphology, and propagation. This contextual information is explored at the classifier level in the proposed patient-independent neonatal seizure detection system. The system is based on the combination of a static and a sequential SVM classifier. A Gaussian dynamic time warping based kernel is used in the sequential classifier. The system is validated on a large dataset of EEG recordings from 17 neonates. The obtained results show an increase in the detection rate at very low false detections per hour, particularly achieving a 12% improvement in the detection of short seizure events over the static RBF kernel based system. | en |
dc.description.sponsorship | Science Foundation Ireland (Principal Investigator Award (SFI 10/IN.1/B3036) and a Science Foundation Ireland Centres Programme Award (12/RC/2272)) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Ahmed, R., Temko, A., Marnane, W. P., Boylan, G. and Lightbody, G. (2017) 'Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel', Computers in Biology and Medicine, 82, pp. 100-110. doi:10.1016/j.compbiomed.2017.01.017 | en |
dc.identifier.doi | 10.1016/j.compbiomed.2017.01.017 | |
dc.identifier.endpage | 110 | |
dc.identifier.issn | 0010-4825 | |
dc.identifier.journaltitle | Computers in Biology and Medicine | en |
dc.identifier.startpage | 100 | |
dc.identifier.uri | https://hdl.handle.net/10468/3545 | |
dc.identifier.volume | 82 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | © 2016, Elsevier Inc. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Automated neonatal seizure detection | en |
dc.subject | Sequential classifier | en |
dc.subject | Fusion | en |
dc.subject | Gaussian dynamic time warping | en |
dc.title | Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel | en |
dc.type | Article (peer-reviewed) | en |