Classifier-based constraint acquisition
dc.contributor.author | Prestwich, Steven D. | |
dc.contributor.author | Freuder, Eugene C. | |
dc.contributor.author | O'Sullivan, Barry | |
dc.contributor.author | Browne, David | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2021-04-29T15:17:45Z | |
dc.date.available | 2021-04-29T15:17:45Z | |
dc.date.issued | 2021-04-17 | |
dc.date.updated | 2021-04-29T15:03:20Z | |
dc.description.abstract | Modeling a combinatorial problem is a hard and error-prone task requiring significant expertise. Constraint acquisition methods attempt to automate this process by learning constraints from examples of solutions and (usually) non-solutions. Active methods query an oracle while passive methods do not. We propose a known but not widely-used application of machine learning to constraint acquisition: training a classifier to discriminate between solutions and non-solutions, then deriving a constraint model from the trained classifier. We discuss a wide range of possible new acquisition methods with useful properties inherited from classifiers. We also show the potential of this approach using a Naive Bayes classifier, obtaining a new passive acquisition algorithm that is considerably faster than existing methods, scalable to large constraint sets, and robust under errors. | en |
dc.description.sponsorship | Science Foundation Ireland (under Grant No. 12/RC/2289-P2 which is co-funded under the European Regional Development Fund) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Prestwich, S. D., Freuder, E. C., O’Sullivan, B. and Browne, D. (2021) 'Classifier-based constraint acquisition', Annals of Mathematics and Artificial Intelligence, (20 pp). doi: 10.1007/s10472-021-09736-4 | en |
dc.identifier.doi | 10.1007/s10472-021-09736-4 | en |
dc.identifier.endpage | 20 | en |
dc.identifier.issn | 1573-7470 | |
dc.identifier.journaltitle | Annals of Mathematics and Artificial Intelligence | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/11237 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.uri | https://link.springer.com/article/10.1007/s10472-021-09736-4 | |
dc.rights | © The Author(s) 2021. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Constraint acquisition | en |
dc.subject | Classifier | en |
dc.subject | Bayesian | en |
dc.subject | Boolean satisfiability | en |
dc.title | Classifier-based constraint acquisition | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prestwich2021_Article_Classifier-basedConstraintAcqu.pdf
- Size:
- 554.14 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: