Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis
dc.contributor.author | Bjornevik, Kjetil | |
dc.contributor.author | Zhang, Zhongli | |
dc.contributor.author | O'Reilly, Éilis J. | |
dc.contributor.author | Berry, James D. | |
dc.contributor.author | Clish, Clary B. | |
dc.contributor.author | Deik, Amy | |
dc.contributor.author | Jeanfavre, Sarah | |
dc.contributor.author | Kato, Ikuko | |
dc.contributor.author | Kelly, Rachel S. | |
dc.contributor.author | Kolonel, Laurence N. | |
dc.contributor.author | Liang, Liming | |
dc.contributor.author | Le Marchand, Loic | |
dc.contributor.author | McCullough, Marjorie L. | |
dc.contributor.author | Paganoni, Sabrina | |
dc.contributor.author | Pierce, Kerry A. | |
dc.contributor.author | Schwarzschild, Michael A. | |
dc.contributor.author | Shadyab, Aladdin H. | |
dc.contributor.author | Wactawski-Wende, Jean | |
dc.contributor.author | Wang, Dong D. | |
dc.contributor.author | Wang, Ying | |
dc.contributor.author | Manson, JoAnn E. | |
dc.contributor.author | Ascherio, Alberto | |
dc.contributor.funder | National Institute of Neurological Disorders and Stroke | en |
dc.contributor.funder | National Institutes of Health | en |
dc.contributor.funder | U.S. Department of Health and Human Services | en |
dc.contributor.funder | American Cancer Society | en |
dc.contributor.funder | National Heart, Lung, and Blood Institute | en |
dc.date.accessioned | 2019-05-28T11:03:07Z | |
dc.date.available | 2019-05-28T11:03:07Z | |
dc.date.issued | 2019-03-29 | |
dc.date.updated | 2019-05-28T10:45:23Z | |
dc.description.abstract | Objective: To identify prediagnostic plasma metabolomic biomarkers associated with amyotrophic lateral sclerosis (ALS). Methods: We conducted a global metabolomic study using a nested case-control study design within 5 prospective cohorts and identified 275 individuals who developed ALS during follow-up. We profiled plasma metabolites using liquid chromatography–mass spectrometry and identified 404 known metabolites. We used conditional logistic regression to evaluate the associations between metabolites and ALS risk. Further, we used machine learning analyses to determine whether the prediagnostic metabolomic profile could discriminate ALS cases from controls. Results: A total of 31 out of 404 identified metabolites were associated with ALS risk (p < 0.05). We observed inverse associations (n = 27) with plasma levels of diacylglycerides and triacylglycerides, urate, purine nucleosides, and some organic acids and derivatives, while we found positive associations for a cholesteryl ester, 2 phosphatidylcholines, and a sphingomyelin. The number of significant associations increased to 67 (63 inverse) in analyses restricted to cases with blood samples collected within 5 years of onset. None of these associations remained significant after multiple comparison adjustment. Further, we were not able to reliably distinguish individuals who became cases from controls based on their metabolomic profile using partial least squares discriminant analysis, elastic net regression, random forest, support vector machine, or weighted correlation network analyses. Conclusions: Although the metabolomic profile in blood samples collected years before ALS diagnosis did not reliably separate presymptomatic ALS cases from controls, our results suggest that ALS is preceded by a broad, but poorly defined, metabolic dysregulation years before the disease onset. | en |
dc.description.sponsorship | National Institute of Neurologic Disorders and Stroke (R01 NS045893); National Institutes of Health (Grants UM1 CA186107; R01 CA49449; UM1 CA167552; U01 CA164973); U.S. Department of Health and Human Services (contracts HHSN268201600018C; HHSN268201600001C; HHSN268201600002C; HHSN268201600003C; HHSN268201600004C) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Bjornevik, K., Zhang, Z., O'Reilly, É. J., Berry, J. D., Clish, C. B., Deik, A., Jeanfavre, S., Kato, I., Kelly, R. S., Kolonel, L. N., Liang, L., Le Marchand, L., McCullough, M. L., Paganoni, S., Pierce, K. A., Schwarzschild, M. A., Shadyab, A. H., Wactawski-Wende, J., Wang, D. D., Wang, Y., Manson, J. E. and Ascherio, A. (2019) 'Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis'. Neurology, 92(18), pp. 2089-2100. doi: 10.1212/WNL.0000000000007401 | en |
dc.identifier.doi | 10.1212/WNL.0000000000007401 | en |
dc.identifier.eissn | 1526-632X | |
dc.identifier.endpage | 2100 | en |
dc.identifier.issn | 0028-3878 | |
dc.identifier.issued | 18 | en |
dc.identifier.journaltitle | Neurology | en |
dc.identifier.startpage | 2089 | en |
dc.identifier.uri | https://hdl.handle.net/10468/7988 | |
dc.identifier.volume | 92 | en |
dc.language.iso | en | en |
dc.publisher | American Academy of Neurology | en |
dc.relation.uri | http://n.neurology.org/content/92/18/e2089.abstract | |
dc.rights | © 2019, American Academy of Neurology. All rights reserved. | en |
dc.subject | Plasma | en |
dc.subject | Metabolomic biomarker | en |
dc.subject | Amyotrophic lateral sclerosis | en |
dc.subject | ALS | en |
dc.subject | Plasma metabolites | en |
dc.subject | Metabolic dysregulation | en |
dc.title | Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis | en |
dc.type | Article (peer-reviewed) | en |