Low-temperature ionic layer adsorption and reaction grown anatase TiO 2 nanocrystalline films for efficient perovskite solar cell and gas sensor applications

dc.contributor.authorShaikh, Shoyebmohamad F.
dc.contributor.authorGhule, Balaji G.
dc.contributor.authorNakate, Umesh T.
dc.contributor.authorShinde, Pritamkumar V.
dc.contributor.authorEkar, Satish U.
dc.contributor.authorO'Dwyer, Colm
dc.contributor.authorKim, Kwang Ho
dc.contributor.authorMane, Rajaram S.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderNational Research Foundation of Koreaen
dc.contributor.funderMinistry of Science ICT and Future Planningen
dc.contributor.funderUniversity Grants Commissionen
dc.date.accessioned2018-08-02T14:21:39Z
dc.date.available2018-08-02T14:21:39Z
dc.date.issued2018-07-20
dc.date.updated2018-08-02T08:57:12Z
dc.description.abstractA low-temperature (90 °C) and directly grown anatase titanium dioxide (TiO2) nanocrystalline film using successive ionic layer adsorption and reaction (SILAR) for perovskite solar cell and gas sensor applications. TiO2 nanocrystalline electron transfer layer (ETL) improves the power conversion efficiency (PCE) of perovskite solar cells due to faster charge transport kinetics as well as slower charge recombination process. The optimized TiO2 nanocrystalline ETL (15 L) demonstrates as high as ~10% PCE with a short circuit current density of 18.0 mA/cm2, open circuit voltage of 0.81 V and fill factor of 66.3% in perovskite solar cells. Furthermore, room-temperature ammonia sensing characteristics of TiO2 nanocrystalline film (25 L) were  demonstrated for various concentration levels of ammonia in dry air conditions. A high room-temperature response of 80% was achieved at 100 ppm of ammonia with rapid response and recovery signatures of 30 and 85 s, and nearly fifteen days stability, respectively. The response of the sensor to other gases such as formaldehyde, petrol, ethanol acetone, and ammonia etc, indicated a high selectivity towards volatile organic compounds of ammonia gas. The room temperature operation, with high selectivity, repeatability and fast transition times, suggests potentially useful in flexible and cost-effective production in optoelectrochemical device technology.en
dc.description.sponsorshipNational Research Foundation of Korea and Ministry of Science ICT and Future Planning, South Korean (Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2013M3A6B1078869)); University Grants Commission, New Delhi ( Post-Doctoral Fellowship scheme (F.4-2/2006 (BSR)/CH/16-17/0015))en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationShaikh, S. F., Ghule, B. G., Nakate, U. T., Shinde, P. V., Ekar, S. U., O’Dwyer, C., Kim, K. H. and Mane, R. S. (2018) 'Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications', Scientific Reports, 8(1), pp. 11016. doi: 10.1038/s41598-018-29363-0en
dc.identifier.doi10.1038/s41598-018-29363-0
dc.identifier.endpage11016en
dc.identifier.issn2045-2322
dc.identifier.journaltitleScientific Reportsen
dc.identifier.startpage11016en
dc.identifier.urihttps://hdl.handle.net/10468/6569
dc.identifier.volume8en
dc.language.isoenen
dc.publisherSpringer Natureen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.urihttps://www.nature.com/articles/s41598-018-29363-0
dc.rights© The Author(s) 2018. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/.en
dc.subjectAdsorptionen
dc.subjectTransition metal oxidesen
dc.subjectOptoelectrochemical device technologyen
dc.subjectElectron transfer layeren
dc.subjectTiO2en
dc.subjectTitanium dioxideen
dc.subjectOrganic–inorganic nanostructuresen
dc.subjectMetal-organic frameworksen
dc.titleLow-temperature ionic layer adsorption and reaction grown anatase TiO 2 nanocrystalline films for efficient perovskite solar cell and gas sensor applicationsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Shaikh_et_al-2018-Scientific_Reports.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
Low-Temperature Ionic Layer Adsorption -1.docx
Size:
148.36 KB
Format:
Microsoft Word XML
Description:
Supplemental File 1
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: