Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes

dc.contributor.authorScheuermann, Andrew G.
dc.contributor.authorLawrence, John P.
dc.contributor.authorKemp, Kyle W.
dc.contributor.authorIto, T.
dc.contributor.authorWalsh, Adrian
dc.contributor.authorChidsey, Christopher E. D.
dc.contributor.authorHurley, Paul K.
dc.contributor.authorMcIntyre, Paul C.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2016-12-01T13:13:49Z
dc.date.available2016-12-01T13:13:49Z
dc.date.issued2016-01
dc.date.updated2016-12-01T12:34:27Z
dc.description.abstractMetal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.en
dc.description.sponsorshipScience Foundation Ireland (US-Ireland R&D Partnership Programme—Grant Number SFI/13/US/I2543)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationScheuermann, Andrew G.; Lawrence, John P.; Kemp, Kyle W.; Ito, T.; Walsh, Adrian; Chidsey, Christopher E. D.; Hurley, Paul K.; McIntyre, Paul C. (2016) 'Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes'. Nature Materials, 15, 99-105. doi: 10.1038/NMAT4451en
dc.identifier.doi10.1038/NMAT4451
dc.identifier.endpage105en
dc.identifier.issn1476-1122
dc.identifier.journaltitleNature Materialsen
dc.identifier.startpage99en
dc.identifier.urihttps://hdl.handle.net/10468/3339
dc.identifier.volume15en
dc.language.isoenen
dc.publisherNature Publishing Groupen
dc.relation.urihttp://www.nature.com/nmat/journal/v15/n1/full/nmat4451.html
dc.subjectOpen-circuit voltageen
dc.subjectSilicon solar-cellsen
dc.subjectPhotoelectrochemical cellsen
dc.subjectOxidationen
dc.subjectLayeren
dc.subjectEfficienten
dc.subjectTiO2en
dc.subjectPerformanceen
dc.subjectConversionen
dc.subjectThicknessen
dc.titleDesign principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
1718.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
1718_Photovoltage_Design_Supplementary_Information_(SI).pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Data
Loading...
Thumbnail Image
Name:
1718_Photovoltage_Design_Supplementary_Information_(SI).docx
Size:
2.5 MB
Format:
Microsoft Word XML
Description:
Author's Original
Loading...
Thumbnail Image
Name:
1718.docx
Size:
1.66 MB
Format:
Microsoft Word XML
Description:
Author's Original
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: