Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes
dc.contributor.author | Scheuermann, Andrew G. | |
dc.contributor.author | Lawrence, John P. | |
dc.contributor.author | Kemp, Kyle W. | |
dc.contributor.author | Ito, T. | |
dc.contributor.author | Walsh, Adrian | |
dc.contributor.author | Chidsey, Christopher E. D. | |
dc.contributor.author | Hurley, Paul K. | |
dc.contributor.author | McIntyre, Paul C. | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2016-12-01T13:13:49Z | |
dc.date.available | 2016-12-01T13:13:49Z | |
dc.date.issued | 2016-01 | |
dc.date.updated | 2016-12-01T12:34:27Z | |
dc.description.abstract | Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes. | en |
dc.description.sponsorship | Science Foundation Ireland (US-Ireland R&D Partnership Programme—Grant Number SFI/13/US/I2543) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Scheuermann, Andrew G.; Lawrence, John P.; Kemp, Kyle W.; Ito, T.; Walsh, Adrian; Chidsey, Christopher E. D.; Hurley, Paul K.; McIntyre, Paul C. (2016) 'Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes'. Nature Materials, 15, 99-105. doi: 10.1038/NMAT4451 | en |
dc.identifier.doi | 10.1038/NMAT4451 | |
dc.identifier.endpage | 105 | en |
dc.identifier.issn | 1476-1122 | |
dc.identifier.journaltitle | Nature Materials | en |
dc.identifier.startpage | 99 | en |
dc.identifier.uri | https://hdl.handle.net/10468/3339 | |
dc.identifier.volume | 15 | en |
dc.language.iso | en | en |
dc.publisher | Nature Publishing Group | en |
dc.relation.uri | http://www.nature.com/nmat/journal/v15/n1/full/nmat4451.html | |
dc.subject | Open-circuit voltage | en |
dc.subject | Silicon solar-cells | en |
dc.subject | Photoelectrochemical cells | en |
dc.subject | Oxidation | en |
dc.subject | Layer | en |
dc.subject | Efficient | en |
dc.subject | TiO2 | en |
dc.subject | Performance | en |
dc.subject | Conversion | en |
dc.subject | Thickness | en |
dc.title | Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- 1718.pdf
- Size:
- 1.58 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
Loading...
- Name:
- 1718_Photovoltage_Design_Supplementary_Information_(SI).pdf
- Size:
- 1.35 MB
- Format:
- Adobe Portable Document Format
- Description:
- Supplementary Data
Loading...
- Name:
- 1718_Photovoltage_Design_Supplementary_Information_(SI).docx
- Size:
- 2.5 MB
- Format:
- Microsoft Word XML
- Description:
- Author's Original
Loading...
- Name:
- 1718.docx
- Size:
- 1.66 MB
- Format:
- Microsoft Word XML
- Description:
- Author's Original
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: