Leader-follower-based self-triggered consensus control of industrial induction motor drives
dc.contributor.author | Ijaz, Zohaib | |
dc.contributor.author | Noor-A-Rahim, Md. | |
dc.contributor.author | Pesch, Dirk | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2022-09-30T13:54:03Z | |
dc.date.available | 2022-09-30T13:54:03Z | |
dc.date.issued | 2022-08-30 | |
dc.date.updated | 2022-09-30T11:39:58Z | |
dc.description.abstract | Alternating current motors are critical to industry, as they drive many machines in the manufacturing and processing industries. To accomplish heavy tasks, often, a number of small motors must operate cooperatively, which means that the operation of the motors must be coordinated using, for example, consensus control. To accomplish this, the motors must communicate with each other. This communication can be periodic or event driven. As periodic communication may waste communication resources when no control update is needed, we propose a need-based self-triggered communication (STC) mechanism to achieve improved communication efficiency. We propose an STC technique for the leaderâ follower-based consensus control of induction motors. To study this method, we developed both centralized and distributed STC models. In the centralized approach, each motor is connected to a central unit that calculates the next communication time. When distributed STC is used, each motor calculates the next communication time solely based on information from directly connected neighboring motors, thus eliminating the possibility of a single point of failure. Extensive simulations were conducted to validate the proposed approaches. Our results show that the proposed self-triggered consensus control technique gets the same level of performance as a standard periodic control approach while utilizing fewer communication resources. | en |
dc.description.sponsorship | Science Foundation Ireland (Grant 16/RC/3918) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Ijaz, Z., Noor-A-Rahim, M. and Pesch, D. (2022) 'Leader-follower-based self-triggered consensus control of industrial induction motor drives', IEEE Systems Journal. doi: 10.1109/JSYST.2022.3198796 | en |
dc.identifier.doi | 10.1109/JSYST.2022.3198796 | en |
dc.identifier.eissn | 1937-9234 | |
dc.identifier.issn | 1932-8184 | |
dc.identifier.journaltitle | IEEE Systems Journal | en |
dc.identifier.uri | https://hdl.handle.net/10468/13717 | |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | © 2022, the Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Behavioral sciences | en |
dc.subject | Centralized and distributed control systems | en |
dc.subject | Consensus control | en |
dc.subject | induction motor | en |
dc.subject | Induction motors | en |
dc.subject | Leaderâ follower-based consensus control | en |
dc.subject | Rotors | en |
dc.subject | Self-triggered communication | en |
dc.subject | Stators | en |
dc.subject | Synchronous motors | en |
dc.subject | Task analysis | en |
dc.title | Leader-follower-based self-triggered consensus control of industrial induction motor drives | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LeaderFollower-Based_Self-Triggered_Consensus_Control_of_Industrial_Induction_Motor_Drives.pdf
- Size:
- 4.24 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: