An axiomatic framework for influence diagram computation with partially ordered preferences

Loading...
Thumbnail Image
Files
ijar-id.pdf(1.07 MB)
Accepted Version
Date
2020-07-08
Authors
Wilson, Nic
Marinescu, Radu
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Research Projects
Organizational Units
Journal Issue
Abstract
This paper presents an axiomatic framework for influence diagram computation, which allows reasoning with partially ordered values of utility. We show how an algorithm based on sequential variable elimination can be used to compute the set of maximal values of expected utility (up to an equivalence relation). Formalisms subsumed by the framework include decision making under uncertainty based on multi-objective utility, or on interval-valued utilities, as well as a more qualitative decision theory based on order of magnitude probabilities and utilities. Consequently, we also introduce the order of magnitude influence diagram to model and solve partially specified sequential decision problems when only qualitative (or imprecise) information is available.
Description
Keywords
Influence diagrams , Optimization , Preferences , Uncertainty , Utility , Variable elimination
Citation
Wilson, N. and Marinescu, R. (2020) 'An axiomatic framework for influence diagram computation with partially ordered preferences', International Journal of Approximate Reasoning, 125, pp. 73-117. doi: 10.1016/j.ijar.2020.06.011