Machine learning applied to accelerate energy consumption models in computing simulators
dc.contributor.author | Castañé, Gabriel G. | |
dc.contributor.author | Calderón Mateos, Alejandro | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad, Gobierno de España | en |
dc.date.accessioned | 2021-11-19T10:56:17Z | |
dc.date.available | 2021-11-19T10:56:17Z | |
dc.date.issued | 2019-10-16 | |
dc.date.updated | 2021-11-18T16:18:44Z | |
dc.description.abstract | The ever-increasing growth of data centres and fog resources makes difficult for current simulation frameworks to model large computing infrastructures. Therefore, a major trade-off for simulators is the balance between abstraction level of the models, the scalability, and the performance of the executions. In order to balance better these, early forays can be found in the literature in which AI techniques are applied, but either lack of generality or are tailored to specific simulation frameworks. This paper describes the methodology to integrate memoization as a technique of supervised learning into any computing simulators framework. In this process, a bespoke kernel was constructed for the analysis of the energy models used in most well known computing simulators -cloud and fog-, but also to avoid simulation overhead. Finally, a detailed evaluation of energy models and its performance is presented showing the impact of applying supervised learning to computing simulator, showing performance improvements when models are more accurate and computations are dense. | en |
dc.description.sponsorship | Science Foundation Ireland (under Grant No. 12/RC/2289 P2 which is co-funded under the European Regional Development Fund);Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministry of Economy, Industry and Competitiveness under the Grant No. TIN2016-79637-P (Towards Unification of HPC and Big Data Paradigms)) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 102012 | en |
dc.identifier.citation | Castañéa, G. G. and Calderón Mateos, A. (2020) 'Machine learning applied to accelerate energy consumption models in computing simulators', Simulation Modelling Practice and Theory, 102, 102012 (16 pp). doi: 10.1016/j.simpat.2019.102012 | en |
dc.identifier.doi | 10.1016/j.simpat.2019.102012 | en |
dc.identifier.endpage | 16 | en |
dc.identifier.issn | 1569-190X | |
dc.identifier.journaltitle | Simulation Modelling Practice and Theory | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/12237 | |
dc.identifier.volume | 102 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1569190X19301455 | |
dc.rights | © 2020 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Computer simulation | en |
dc.subject | Machine learning | en |
dc.subject | Memoization | en |
dc.subject | Simulation | en |
dc.title | Machine learning applied to accelerate energy consumption models in computing simulators | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Elsevier___Memoization_applied_to_energy_consumption_models_in_computing_simulators-Authors_version.pdf
- Size:
- 1.66 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: