Recurrent neural network equalizer to extend input power dynamic range of SOA in 100Gb/s/λ PON
dc.contributor.author | Murphy, Stephen | |
dc.contributor.author | Townsend, Paul D. | |
dc.contributor.author | Antony, Cleitus | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2022-11-29T12:10:07Z | |
dc.date.available | 2022-11-29T12:10:07Z | |
dc.date.issued | 2022-09-23 | |
dc.date.updated | 2022-11-29T11:55:14Z | |
dc.description.abstract | We propose a novel equalization scheme for 100Gb/s/λ PAM4 PON based on Gated Recurrent Neural Network to increase SOA preamplifier input power dynamic range tolerance to 30 dB below hard-decision FEC BER limit of 3.8×10 −3. | en |
dc.description.sponsorship | Science Foundation Ireland (12/RC/2276P2) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | SW4E.1 | en |
dc.identifier.citation | Murphy, S., Townsend, P. D. and Antony, C. (2022) 'Recurrent neural network equalizer to extend input power dynamic range of SOA in 100Gb/s/λ PON', 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15-20 May. Available at: https://ieeexplore.ieee.org/document/9889990 (Accessed: 29 November 2022) | en |
dc.identifier.endpage | 2 | en |
dc.identifier.isbn | 978-1-957171-05-0 | |
dc.identifier.isbn | 978-1-6654-6666-0 | |
dc.identifier.issn | 2160-8989 | |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13887 | |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.uri | https://ieeexplore.ieee.org/document/9889990 | |
dc.rights | © 2022, the Authors. Published by IEEE. CLEO 2022 © Optica Publishing Group 2022. | en |
dc.subject | Recurrent neural networks | en |
dc.subject | Equalizers | en |
dc.subject | Dynamic range | en |
dc.subject | Logic gates | en |
dc.subject | Lasers and electrooptics | en |
dc.subject | Preamplifiers | en |
dc.subject | Electrooptical waveguides | en |
dc.title | Recurrent neural network equalizer to extend input power dynamic range of SOA in 100Gb/s/λ PON | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CLEO22_Extended_Deadline_FinalDraft.pdf
- Size:
- 669.52 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: