Quantifying the effect of electronic conductivity on the rate-performance of nanocomposite battery electrodes

dc.contributor.authorTian, Ruiyuan
dc.contributor.authorAlcala, Nolito
dc.contributor.authorO'Neill, Steven
dc.contributor.authorHorvath, Dominik
dc.contributor.authorCoelho, João
dc.contributor.authorGriffin, Aideen
dc.contributor.authorZhang, Yan
dc.contributor.authorNicolosi, Valeria
dc.contributor.authorO'Dwyer, Colm
dc.contributor.authorColeman, Jonathan
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHorizon 2020en
dc.date.accessioned2020-03-30T10:23:12Z
dc.date.available2020-03-30T10:23:12Z
dc.date.issued2020-01-30
dc.date.updated2020-03-30T10:06:47Z
dc.description.abstractWhile it is well-known that the electronic conductivity of electrodes has a critical impact on rate performance in batteries, this relationship has been quantified only by computer simulations. Here we investigate the relationship between electrode electronic conductivity and rate performance in a model cathode system of lithium–nickel–manganese–cobalt–oxide (NMC) filled with various quantities of carbon black, single-walled carbon nanotubes, and graphene. We find extreme conductivity anisotropy and significant differences in the dependence of conductivity on mass fraction among the different fillers. Fitting capacity versus rate curves yielded the characteristic time associated with charge/discharge. This parameter increased linearly with the inverse of the out-of-plane electronic conductivity, with all data points falling on the same master curve. Using a simple mechanistic model for the characteristic time, we develop an equation that matches the experimental data almost perfectly with no adjustable parameters. This implies that increasing the electrode conductivity improves the rate performance by decreasing the RC charging time of the electrode and shows rate performance to be optimized for any electrode once σOOP > 1 S/m, a condition achieved by including <1 wt % single-walled carbon nanotubes in the electrode.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationTian, R., Alcala, N., O'Neill, S., Horvath, D., Coelho, J., Griffin, A., Zhang, Y., Nicolosi, V., O'Dwyer, C. and Coleman, J. (2020) 'Quantifying the effect of electronic conductivity on the rate-performance of nanocomposite battery electrodes', ACS Applied Energy Materials, 3(3), pp. 2966-2974. doi: 10.1021/acsaem.0c00034en
dc.identifier.doi10.1021/acsaem.0c00034en
dc.identifier.endpage2974en
dc.identifier.issn2574-0962
dc.identifier.issued3en
dc.identifier.journaltitleACS Applied Energy Materialsen
dc.identifier.startpage2966en
dc.identifier.urihttps://hdl.handle.net/10468/9787
dc.identifier.volume3en
dc.language.isoenen
dc.publisherACS Publicationsen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/11/PI/1087/IE/2D atomic crystal-nanoconductor hybrids: High conductivity nano-structured materials for energy applications/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::SGA-RIA/785219/EU/Graphene Flagship Core Project 2/GrapheneCore2en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/15/TIDA/2893/IE/Advanced Battery Materials for High Volumetric Energy Density Li-ion Batteries for Remote Off-Grid Power/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/825114/EU/Smart Autonomous Multi Modal Sensors for Vital Signs Monitoring/SmartVistaen
dc.relation.urihttps://pubs.acs.org/doi/abs/10.1021/acsaem.0c00034
dc.rights© 2020, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials after technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00034en
dc.subjectAnodeen
dc.subjectCathodeen
dc.subjectRate limitationsen
dc.subjectAnalytic modelen
dc.subjectElectrical limitationsen
dc.titleQuantifying the effect of electronic conductivity on the rate-performance of nanocomposite battery electrodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ae-2020-00034s.R2_Proof_hi.pdf
Size:
700.73 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
ae0c00034_si_001.pdf
Size:
660.94 KB
Format:
Adobe Portable Document Format
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: