Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves
dc.contributor.author | Van Truong, Hoang | en |
dc.contributor.author | Tran, Khanh-Tung | en |
dc.contributor.author | Vu, Xuan-Son | en |
dc.contributor.author | Nguyen, Duy-Khuong | en |
dc.contributor.author | Bhuyan, Monowar | en |
dc.contributor.author | Nguyen, Hoang D. | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2024-09-09T08:43:25Z | |
dc.date.available | 2024-09-09T08:43:25Z | |
dc.date.issued | 2024-09-03 | en |
dc.description.abstract | This paper investigates a novel graph-based representation of sound waves inspired by the physical phenomenon of correlated vibrations. We propose a Wave2Graph framework for integrating multiple acoustic representations, including the spectrum of frequencies and correlations, into various neural computing architectures to achieve new state-of-the-art performances in sound classification. The capability and reliability of our end-to-end framework are evidently demonstrated in voice pathology for low-cost and non-invasive mass-screening of medical conditions, including respiratory illnesses and Alzheimer’s Dementia. We conduct extensive experiments on multiple public benchmark datasets (ICBHI and ADReSSo) and our real-world dataset (IJSound: Respiratory disease detection using coughs and breaths). Wave2Graph framework consistently outperforms previous state-of-the-art methods with a large magnitude, up to 7.65% improvement, promising the usefulness of graph-based representation in signal processing and machine learning. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Hoang, V.-T., Tran, K.-T., Vu, X.-S., Nguyen, D.-K., Bhuyan, M. and Nguyen, H.D. (2024) ‘Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves’, AI Open, 5, pp. 115–125. Available at: https://doi.org/10.1016/j.aiopen.2024.08.004 | en |
dc.identifier.doi | https://doi.org/10.1016/j.aiopen.2024.08.004 | en |
dc.identifier.endpage | 125 | en |
dc.identifier.issn | 2666-6510 | en |
dc.identifier.journaltitle | AI Open | en |
dc.identifier.startpage | 115 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16306 | |
dc.identifier.volume | 5 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | AI Open | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Centres for Research Training Programme::Data and ICT Skills for the Future/18/CRT/6223/IE/SFI Centre for Research Training in Artificial Intelligence/ | en |
dc.rights | © 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Wave2Graph | en |
dc.subject | Graph neural network | en |
dc.subject | Correlation | en |
dc.subject | Sound signal processing | en |
dc.subject | Neural network architecture | en |
dc.title | Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves | en |
dc.type | Article (peer-reviewed) | en |
dc.type | journal-article | en |