Road pavement health monitoring system using smartphone sensing with a two-stage machine learning model
dc.contributor.author | Zhao, Kai | en |
dc.contributor.author | Xu, Shuoshuo | en |
dc.contributor.author | Loney, James | en |
dc.contributor.author | Visentin, Andrea | en |
dc.contributor.author | Li, Zili | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2024-09-09T13:07:20Z | |
dc.date.available | 2024-09-09T13:07:20Z | |
dc.date.issued | 2024-08-17 | en |
dc.description.abstract | Drive-by road pavement monitoring, using smartphone sensing, has faced longstanding challenges in adoption due to low accuracy and limited applicability. This stems from significant uncertainties during data collection in real-world scenarios, making it prohibitively difficult in applying conventional machine learning models to the detection of road pavement anomalies. This paper presents a two-stage machine learning approach that extracts potential anomalies from the dataset and classifies them into four typical road feature categories. Unlike time-series data analysis, this approach transforms time-series into geospatial series, allowing the analysis to be time-independent thereby capable of detecting road anomalies regardless of driving speeds. Additionally, a framework for a road pavement health monitoring system is proposed to collect data, integrate the machine learning engine, and visualise road anomalies. The developed system was tested on two shuttle buses with normal smartphones, which achieved 87% overall accuracy compared against manual inspection. | en |
dc.description.sponsorship | e EU Commission Recovery and Resilience Facility under the Science Foundation Ireland Future Digital Challenge Grant Number 22/NCF/FD/10932, and secondarily by SFI, Grant number 12/ RC/2289-P2 co-funded under the European Regional Development Fund. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 105664 | en |
dc.identifier.citation | Zhao, K., Xu, S., Loney, J., Visentin, A. and Li, Z. (2024) ‘Road pavement health monitoring system using smartphone sensing with a two-stage machine learning model’, Automation in Construction, 167, p. 105664. Available at: https://doi.org/10.1016/j.autcon.2024.105664 | en |
dc.identifier.doi | https://doi.org/10.1016/j.autcon.2024.105664 | en |
dc.identifier.endpage | 15 | en |
dc.identifier.issn | 0926-5805 | en |
dc.identifier.journaltitle | Automation in Construction | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16308 | |
dc.identifier.volume | 167 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Automation in Construction | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/National Challenge Fund::Future Digital Challenge/22/NCF/FD/10932/IE/‘Road Phone’ - Road pavement condition monitoring using smartphone sensing at the community level/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/National Challenge Fund::Future Digital Challenge/22/NCF/FD/10932/IE/‘Road Phone’ - Road pavement condition monitoring using smartphone sensing at the community level/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/National Challenge Fund::Future Digital Challenge/22/NCF/FD/10932/IE/‘Road Phone’ - Road pavement condition monitoring using smartphone sensing at the community level/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.rights | © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Drive-by road pavement monitoring | en |
dc.subject | Structural health monitoring | en |
dc.subject | Smartphone sensing | en |
dc.subject | 2-stage machine learning | en |
dc.title | Road pavement health monitoring system using smartphone sensing with a two-stage machine learning model | en |
dc.type | Article (peer-reviewed) | en |
dc.type | journal-article | en |
oaire.citation.volume | 167 | en |