Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data

Loading...
Thumbnail Image
Files
Date
2019
Authors
Ho, Quang Tri
Murphy, Kevin M.
Drapala, Kamil P.
Fenelon, Mark A.
O'Mahony, James A.
Tobin, John T.
McCarthy, Noel A.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Research Projects
Organizational Units
Journal Issue
Abstract
This work aimed to model the effect of heat treatment on viscosity of milk protein concentrate (MPC) using kinetic data. MPC obtained after ultrafiltration was subjected to different time-temperature heat treatment combinations. Heat treatment at high temperature and short time (i.e., 100 or 120 °C×30 s) led to a significant increase in viscosity in MPC systems. Second-order reaction kinetic models proved a better fit than zero- or first-order models when fitted for viscosity response to heat treatment. A distinct deviation in the slope of the Arrhenius plot at 77.9 °C correlated to a significant increase in the rate of viscosity development at temperatures above this, confirming the transition of protein denaturation from the unfolding to the aggregation stage. This study demonstrated that heat-induced viscosity of MPC as a result of protein denaturation/aggregation can be successfully modelled in response to thermal treatment, providing useful new information in predicting the effect of thermal treatment on viscosity of MPC. © 2018 Elsevier Ltd
Description
Keywords
Heat stability , Heat treatment , Milk protein concentrate , Modelling , Reaction kinetics , Viscosity
Citation
Ho, Q. T., Murphy, K. M., Drapala, K. P., Fenelon, M. A., O'Mahony, J. A., Tobin, J. T. and McCarthy, N. A. (2019) 'Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data', Journal of Food Engineering, 246, pp.179-191. https://doi.org/10.1016/j.jfoodeng.2018.10.026
Link to publisher’s version