Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses
Mancabelli, Leonardo; Milani, Christian; Lugli, Gabriele A.; Turroni, Francesca; Mangifesta, Marta; Viappiani, Alice; Ticinesi, Andrea; Nouvenne, Antonio; Meschi, Tiziana; van Sinderen, Douwe; Ventura, Marco
Date:
2017
Copyright:
© 2017, the Authors. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Citation:
Mancabelli, L., Milani, C., Lugli, G. A., Turroni, F., Mangifesta, M., Viappiani, A., Ticinesi, A., Nouvenne, A., Meschi, T., van Sinderen, D. and Ventura, M. (2017) 'Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses', Scientific Reports, 7(1), 9879 (9pp). doi: 10.1038/s41598-017-10663-w
Abstract:
Functional constipation (FC) is a gastrointestinal disorder with a high prevalence among the general population. The precise causes of FC are still unknown and are most likely multifactorial. Growing evidence indicates that alterations of gut microbiota composition contribute to constipation symptoms. Nevertheless, many discrepancies exist in literature and no clear link between FC and gut microbiota composition has as yet been identified. In this study, we performed 16 S rRNA-based microbial profiling analysis of 147 stool samples from 68 FC individuals and compared their microbial profiles with those of 79 healthy subjects (HS). Notably, the gut microbiota of FC individuals was shown to be depleted of members belonging to Bacteroides, Roseburia and Coprococcus 3. Furthermore, the metabolic capabilities of the gut microbiomes of five FC and five HS individuals were evaluated through shotgun metagenomics using a MiSeq platform, indicating that HS are enriched in pathways involved in carbohydrate, fatty acid and lipid metabolism as compared to FC. In contrast, the microbiomes corresponding to FC were shown to exhibit high abundance of genes involved in hydrogen production, methanogenesis and glycerol degradation. The identified differences in bacterial composition and metabolic capabilities may play an important role in development of FC symptoms.
Show full item record