Graphene facilitates biomethane production from protein derived glycine in anaerobic digestion

Thumbnail Image
1-s2.0-S2589004218302207-main.pdf(2.82 MB)
Published Version
1-s2.0-S2589004218302207-mmc1.pdf(689.1 KB)
Supplementary Information
Lin, Richen
Deng, Chen
Cheng, Jun
Xia, Ao
Lens, Piet N. L.
Jackson, Stephen A.
Dobson, Alan D. W.
Murphy, Jerry D.
Journal Title
Journal ISSN
Volume Title
Elsevier B.V.
Research Projects
Organizational Units
Journal Issue
Interspecies electron transfer is a fundamental factor determining the efficiency of anaerobic digestion (AD), which involves syntrophy between fermentative bacteria and methanogens. Direct interspecies electron transfer (DIET) induced by conductive materials can optimize this process offering a significant improvement over indirect electron transfer. Herein, conductive graphene was applied in the AD of protein-derived glycine to establish DIET. The electron-producing reaction via DIET is thermodynamically more favorable and exhibits a more negative Gibbs free energy value (−60.0 kJ/mol) than indirect hydrogen transfer (−33.4 kJ/mol). The Gompertz model indicated that the kinetic parameters exhibited linear correlations with graphene addition from 0.25 to 1.0 g/L, leading to the highest increase in peak biomethane production rate of 28%. Sedimentibacter (7.8% in abundance) and archaea Methanobacterium (71.1%) and Methanosarcina (11.3%) might be responsible for DIET. This research can open up DIET to a range of protein-rich substrates, such as algae.
Graphene , Glycine , Biomethane , Interspecies electron transfer
Lin, R., Deng, C., Cheng, J., Xia, A., Lens, P. N. L., Jackson, S. A., Dobson, A. D. W. and Murphy, J. D. (2018) 'Graphene facilitates biomethane production from protein derived glycine in anaerobic digestion', iScience. 10, pp. 158-170. doi:10.1016/j.isci.2018.11.030
Link to publisher’s version