A grouping genetic algorithm for joint stratification and sample allocation designs

dc.contributor.authorO'Luing, Mervyn
dc.contributor.authorPrestwich, Steven D.
dc.contributor.authorTarim, S. Armagan
dc.date.accessioned2021-02-23T09:54:07Z
dc.date.available2021-02-23T09:54:07Z
dc.date.issued2019-12-17
dc.date.updated2021-02-22T17:24:43Z
dc.description.abstractFinding the optimal stratification and sample size in univariate and multivariate sample design is hard when the population frame is large. There are alternative ways of modelling and solving this problem, and one of the most natural uses genetic algorithms (GA) combined with the Bethel-Chromy evaluation algorithm. The GA iteratively searches for the minimum sample size necessary to meet precision constraints in partitionings of atomic strata created by the Cartesian product of auxiliary variables. We point out a drawback with classical GAs when applied to the grouping problem, and propose a new GA approach using “grouping” genetic operators instead of traditional operators. Experiments show a significant improvement in solution quality for similar computational effort.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid12-001-Xen
dc.identifier.citationO’Luing, M., Prestwich, S. and Tarim, S.A. (2019). A grouping genetic algorithm for joint stratification and sample allocation designs. Survey Methodology, Statistics Canada, Catalogue No. 12-001-X, Vol. 45, No. 3, pp. 513-531. Available at http://www.statcan.gc.ca/pub/12-001-x/2019003/article/00007-eng.htmen
dc.identifier.endpage531en
dc.identifier.issn1492-0921
dc.identifier.issued3en
dc.identifier.journaltitleSurvey Methodologyen
dc.identifier.startpage513en
dc.identifier.urihttps://hdl.handle.net/10468/11091
dc.identifier.volume45en
dc.language.isoenen
dc.publisherStatistics Canadaen
dc.relation.urihttp://www.statcan.gc.ca/pub/12-001-x/2019003/article/00007-eng.htm
dc.rights© Her Majesty the Queen in Right of Canada as represented by the Minister of Industry, 2019 All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.en
dc.rights.urihttps://www.statcan.gc.ca/eng/reference/licenceen
dc.subjectGrouping genetic algorithmen
dc.subjectOptimal stratificationen
dc.subjectSample allocationen
dc.subjectR softwareen
dc.titleA grouping genetic algorithm for joint stratification and sample allocation designsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
00007-eng.pdf
Size:
371.13 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: